ASOCIACIÓN ENTRE MICROCEFALIA E INFECCIÓN POR VIRUS DEL ZIKA EN GESTANTES PERTENECIENTES A UNA EPSS. COLOMBIA, 2017

Autor
Juan Diego Rodríguez M.

Trabajo presentado como requisito para optar al título de Magíster en Epidemiología

DEPARTAMENTO DE SALUD PÚBLICA
UNIVERSIDAD DEL NORTE
2019
ASOCIACIÓN ENTRE MICROCEFALIA E INFECCIÓN POR VIRUS DEL ZIKA EN GESTANTES PERTENECIENTES A UNA EPSS. COLOMBIA, 2017

Autor
Juan Diego Rodríguez M.

Directora
Enf. Carmen Laborde. MsC Epidemiología

Trabajo presentado como requisito para optar al título de Magíster en Epidemiología

DEPARTAMENTO DE SALUD PÚBLICA
UNIVERSIDAD DEL NORTE
2019
TABLA DE CONTENIDO

<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Pág.</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESUMEN</td>
<td>6</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>8</td>
</tr>
<tr>
<td>1. PLANTEAMIENTO DEL PROBLEMA</td>
<td>9</td>
</tr>
<tr>
<td>2. JUSTIFICACIÓN</td>
<td>11</td>
</tr>
<tr>
<td>3. OBJETIVOS</td>
<td>14</td>
</tr>
<tr>
<td>3.1 OBJETIVO GENERAL</td>
<td>14</td>
</tr>
<tr>
<td>3.2 OBJETIVOS ESPECÍFICOS</td>
<td>14</td>
</tr>
<tr>
<td>4. MARCO TEÓRICO Y ESTADO DEL ARTE</td>
<td>15</td>
</tr>
<tr>
<td>4.1 GENERALIDADES SOBRE EL ZIKA</td>
<td>15</td>
</tr>
<tr>
<td>4.2 ZIKA, EMBARAZO Y MICROCEFALIA</td>
<td>18</td>
</tr>
<tr>
<td>5. METODOLOGÍA</td>
<td>22</td>
</tr>
<tr>
<td>5.1 TIPO DE ESTUDIO</td>
<td>22</td>
</tr>
<tr>
<td>5.2 POBLACIÓN</td>
<td>22</td>
</tr>
<tr>
<td>5.2.1 Población de referencia</td>
<td>22</td>
</tr>
<tr>
<td>5.2.2 Población accesible</td>
<td>22</td>
</tr>
<tr>
<td>5.2.3 Población elegible</td>
<td>22</td>
</tr>
<tr>
<td>5.2.4 Muestra</td>
<td>23</td>
</tr>
<tr>
<td>5.3 FUENTE DE INFORMACIÓN</td>
<td>24</td>
</tr>
<tr>
<td>5.4 RECOLECCIÓN, PROCESAMIENTO Y ANÁLISIS DE LA INFORMACIÓN</td>
<td>24</td>
</tr>
<tr>
<td>5.5 VARIABLES</td>
<td>25</td>
</tr>
<tr>
<td>5.6 CONTROL DE ERRORES Y SESGOS</td>
<td>26</td>
</tr>
<tr>
<td>5.7 ASPECTOS ÉTICOS</td>
<td>26</td>
</tr>
<tr>
<td>6. RESULTADOS</td>
<td>27</td>
</tr>
<tr>
<td>7. DISCUSION</td>
<td>35</td>
</tr>
<tr>
<td>8. CONCLUSIONES Y RECOMENDACIONES</td>
<td>38</td>
</tr>
<tr>
<td>REFERENCIAS BIBLIOGRÁFICAS</td>
<td>40</td>
</tr>
</tbody>
</table>
LISTA DE TABLAS

<table>
<thead>
<tr>
<th>Tabla</th>
<th>Descripción</th>
<th>Pág.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabla 1.</td>
<td>Características sociodemográficas y obstétricas de gestantes pertenecientes a una EPS del régimen subsidiado. 2016-2017, de manera general y según presencia de microcefalia</td>
<td>27</td>
</tr>
<tr>
<td>Tabla 2.</td>
<td>Presencia de comorbilidades en gestantes pertenecientes a una EPS del régimen subsidiado. 2016-2017.</td>
<td>31</td>
</tr>
<tr>
<td>Tabla 3.</td>
<td>Relación entre zika y microcefalia en gestantes pertenecientes a una EPS del régimen subsidiado. 2016-2017.</td>
<td>32</td>
</tr>
<tr>
<td>Tabla 4.</td>
<td>Relación entre microcefalia y zika, según edad y variables clínicas de la madre</td>
<td>33</td>
</tr>
</tbody>
</table>
LISTA DE GRÁFICOS

Pág.

Gráfico 1. Distribución de gestantes pertenecientes a una EPS del régimen subsidiado, según edad. 2016-2017. ...28

Gráfico 2. Distribución de gestantes pertenecientes a una EPS del régimen subsidiado, según pertenencia étnica. 2016-2017. ...29

Gráfico 3. Distribución de gestantes pertenecientes a una EPS del régimen subsidiado, según riesgo obstétrico, controles prenatales y tipo de parto. 2016-2017 ..29

Gráfico 4. Presencia de comorbilidades en gestantes pertenecientes a una EPS del régimen subsidiado. 2016-2017...31

Gráfico 5. Relación entre zika y microcefalia en gestantes pertenecientes a una EPS del régimen subsidiado. 2016-2017...32
RESUMEN

Introducción:
El Zika es un flavivirus trasmitido por vectores que produce alteraciones en el desarrollo fetal cuando existe infección durante la gestación siendo la microcefalia la más frecuente. Este estudio buscó determinar la asociación entre microcefalia e infección por virus del ZIKA en gestantes de una EPS en Colombia entre 2016 y 2017.

Objetivo:
Determinar la asociación entre microcefalia e infección por virus del zika en gestantes pertenecientes a una EPS de Colombia.

Materiales y métodos:
Estudio de casos y controles. Se empleó una base de datos de maternas y nacimientos notificados al Sivigila por parte de la EPS entre el 2016 y 2017. Se obtuvieron 15 casos y 20415 controles definiendo como caso aquel recién nacido diagnosticado con microcefalia, se caracterizó la población de gestantes según variables sociodemográficas y clínicas en la madre y los recién nacidos incluyendo comorbilidades maternas y alteraciones fetales.
Se emplearon estadísticos descriptivos y medidas de tendencia central, según la naturaleza de las variables, así como medidas estadísticas para identificar posible asociación estadística: chi cuadrado o prueba exacta de fisher, Odds Ratio e IC 95%.

Resultados:

El 53,3% de las participantes tenía entre 20 y 29 años, 80% no se identificaba con ningún grupo étnico, 57,1% tuvieron un alto riesgo obstétrico. Las principales comorbilidades registradas fueron: hipertensión inducida por el embarazo (2,5%), y el virus del zika (1,4%). El 80% de los casos de microcefalia se relacionó con madres con ZIKA encontrando relación estadística significativa OR: 286,6 IC 95%: 80,42 - 1021,21. Las otras variables clínicas no tuvieron OR que explicaran asociación estadística con significancia.

Conclusiones:

Es posible que en la población estudiada se hubiera presentado una relación significativa entre la presencia de zika en la madre y el desarrollo de microcefalia, pero se necesitan futuras investigaciones para determinar elementos causales.

Palabras clave: Virus del Zika, microcefalia.
ABSTRACT

Introduction:
Zika is a flavivirus transmitted by vectors that produces alterations in fetal development when there is infection during gestation, microcephaly is the most frequent alteration. This study wants to determine the association between microcephaly and ZIKA virus infection in pregnant women of an EPS in Colombia. 2016 and 2017.

Objective:
To determine the association between microcephaly and Zika virus infection in pregnant women from a Colombian EPS.

Materials and methods:
Cases and controls study. A database of maternities and births notified to SIVIGILA was used by the EPS between 2016 and 2017. Fifteen cases and 20415 controls were obtained, defining as a case that newborn diagnosed with microcephaly, the pregnant population was characterized according to sociodemographic variables and clinics in the mother and newborns, including maternal comorbidities and fetal alterations. Descriptive statistics and measures of central tendency were used, according to the nature of the variables, as well as statistical measures to identify possible statistical association: chi square or fisher's exact test, Odds Ratio and 95% CI.

Results:
53.3% of the participants were between 20 and 29 years old, 80% did not identify with any ethnic group, 57.1% had a high obstetric risk. The main comorbidities registered were: hypertension induced by pregnancy (2.5%), and Zika virus (1.4%). 80% of the cases of microcephaly were related to mothers with ZIKA, finding a statistically significant relationship OR: 286.6 95% CI: 80.42 - 1021.21. The other clinical variables did not have OR that explained statistical association with significance.

Conclusion:
It is possible that in the studied population there was a significant relationship between the presence of Zika in the mother and the development of microcephaly, but future investigations are needed to determine causal elements.
Key words: Zika virus, microcephaly.

1. PLANTEAMIENTO DEL PROBLEMA

Las anomalías congénitas son también conocidos como defectos de nacimiento, enfermedades congénitas o malformaciones congénitas; la Organización Mundial de la Salud (OMS), las define “anomalías estructurales o funcionales (por ejemplo, trastornos metabólicos) que se producen durante la vida intrauterina y pueden ser identificados antes de nacer, al nacer o más tarde en la vida” (1). Estas ocupan los primeros lugares de morbilidad y mortalidad en muchos países,(2) siendo responsables de 8% a 15% de las muertes perinatales y 13% a 16% de las muertes neonatales en países en vías de desarrollo.(3) Alrededor de 2,5% de los recién nacidos tienen una malformación reconocible al momento del nacimiento,(4) sin embargo, debido a la gran diversidad de malformaciones y por el hecho que muchas no llegan a diagnosticarse, determinar con exactitud la prevalencia es sumamente difícil.

La microcefalia es una de las malformaciones más frecuentes, y a pesar de la existencia de múltiples causas de origen ambiental y genético para el desarrollo de esta y otras malformaciones congénitas, algunas evidencias apuntan a una relación entre la infección por Zika y estos eventos. De hecho, RNA de Zika fue detectado en el líquido amniótico y placenta de dos madres y en el cerebro de un bebé que murió poco después del nacimiento,(5) lo cual sugirió una fuerte asociación entre la infección Zika durante el embarazo y microcefalia.

En Colombia, desde agosto 2015 el Instituto Nacional de Salud del país inició formalmente el programa de vigilancia epidemiológica. Se notificaron, desde la semana epidemiológica 40 de 2015 hasta la semana epidemiológica 23 de 2016, 8221 casos confirmados y 85021 sospechosos por clínica y se considera que podría existir un sub-registro importante.(6) De la misma forma, en marzo de ese año, el
Instituto Nacional de Salud emitió el primer Protocolo de Vigilancia en Salud Pública sobre Defectos Congénitos, con la intención de vigilar e intensificar la búsqueda y registro de casos para obtener cifras reales de la situación, ya que, con la aparición de los casos de zika en maternas, ha ocurrido un incremento en los casos notificados de microcefalia y otras malformaciones neurológicas.

Según el Boletín Epidemiológico N°36: (7) entre las semanas epidemiológicas 01 a la 36 de 2016 se confirmaron 40 casos de microcefalias asociados al virus Zika, 195 fueron descartados y 216 estaban en estudio en ese momento. Muchos de estos casos pertenecen a una de las más importantes Entidades Promotoras de Salud Subsidiada (EPSS), lo cual se ha observado de manera empírica a través de los registros de notificación al Sistema de Vigilancia en Salud (Sivigila) que la Empresa periódicamente envía; sin embargo, no se ha llevado a cabo una medición objetiva de la relación entre las variables en cuestión, motivo por el cual surgió la siguiente pregunta problema: ¿Existe asociación entre la presencia de microcefalia con la infección materna por virus del zika, en gestantes pertenecientes a una EPSS de Colombia, durante el año 2017?
2. JUSTIFICACIÓN

En América del Sur, de acuerdo con la Organización Panamericana de la Salud,(8) las malformaciones mayores encontradas con mayor frecuencia (casos por cada 100,000 nacidos vivos) son: alteraciones cardiacas: 28, defectos de cierre de tubo neural: 24, síndrome de Down: 16, labio/paladar hendido: 15, defectos de pared abdominal: 4. En Colombia, en el año 2011, las malformaciones congénitas fueron la causa principal de fallecimiento en menores de un año, en 20,8%.(9)

En Brasil,(10) uno de los países más afectados por el Zika, los casos de microcefalia aumentaron desde que se confirmó la presencia del virus y las cifras han sido las más altas desde el año 2000. A enero del 2016 se reportaban 574 casos de microcefalia asociada a infección por Zika durante el periodo temprano de gestación y se confirmaba la presencia del virus en 22 de los 26 estados en las cinco regiones del país. Al respecto, Rassmusen (11) sugiere que, a partir de distintos criterios para probar la existencia de teratogénesis en humanos, existe suficiente evidencia científica y epidemiológica para inferir una relación causal entre infección por virus del Zika en mujeres durante el periodo prenatal y anormalidades congénitas en recién nacidos y fetos.

Adicionalmente, Brasil y cols.,(12) llevaron a cabo un estudio longitudinal prospectivo en el que participaron 88 mujeres embarazadas (5 a 38 semanas) que hubieran tenido rash dentro de los 5 días anteriores y con muestras de sangre y orina para Zika por PCR-RT. Adicionalmente, se hizo valoración ecográfica. Los investigadores encontraron que 82% resultaron positivas para Zika en sangre, orina, o ambos. Las características clínicas predominantes fueron: prurito macular descendente o erupción maculopapular, artralgias, inyección conjuntival, y dolor de cabeza. El 28% tuvo fiebre (a corto plazo y de bajo grado).
Las mujeres positivas para Zika fueron más propensas que las negativas para erupción maculopapular (44% vs. 12%, p = 0,02), afectación conjuntival (58% vs. 13%, P = 0,002), y linfadenopatía (40% vs. 7%, P = 0,02). La ecografía fetal se llevó a cabo en 42 mujeres positivas y en todas las negativas, encontrándose anomalías fetales en 12 de las 42 ZIKV-positivas (29%) y en ninguna de las 16 negativas.

Dentro de los hallazgos adversos, hubo dos muertes fetales, a las 36 y 38 semanas de gestación (2 fetos) y se encontró restricción en el crecimiento intrauterino con o sin microcefalia (5 fetos), calcificaciones ventriculares u otra lesión del sistema nervioso central en 7 fetos, y volumen de líquido amniótico anormal o flujo de la arteria cerebral o umbilical en 7 fetos.

Por otro lado, el estudio filogenético de las secuencias genómicas del virus tomado de cerebro fetal ha sido similar (99,7%) al encontrado en otros pacientes infectados en la Polinesia francesa en 2013 y en Sao Paulo, Brasil, en 2015,(13) lo cual es de suma importancia, ya que la asociación entre las anomalías cerebrales fetales y la infección por Zika fue confirmada por el hallazgo del virus en el cerebro en microscopía electrónica.

Todavía falta conocer mucho con respecto al mecanismo implicado en el neurotropismo del Zika. Sin embargo, se han visualizado partículas densas consistentes con el virus en el retículo endoplásmico dañado,(14) y el estudio histopatológico fetal ha detectado estructuras plegadas muy semejantes a los restos de los complejos de replicación que son característicos de los flavivirus.(15)

Aunque la asociación entre las infecciones maternas y las anomalías congénitas se han reconocido durante mucho tiempo, especialmente cuando la infección ocurre durante las primeras 12 semanas de embarazo,(16) el PAI (Programa Ampliado de Inmunizaciones) ha disminuido la incidencia de algunas infecciones que resultan en anomalías congénitas, como la rubéola. Sin embargo, infecciones como la
producida por el Zika pueden afectar múltiples sistemas de órganos, y muchos están asociados con daño cerebral específico, incluyendo microcefalia, calcificaciones (predominantemente periventricular, pero también en los ganglios basales y en el parénquima cerebral), ventriculomegalia, neuronal, trastornos de la migración (paquigiria, polimicrogiria, y lisencefalia), hipoplasia cerebelosa y anomalías en la sustancia blanca,(17) por lo que la vigilancia continua y evaluación de nuevos casos es importante para describir el espectro fenotípico de posibles afecciones congénitas asociadas al virus del Zika, por lo que surge la necesidad de llevar a cabo un estudios de casos y controles para confirmar la asociación, determinar la magnitud del riesgo potencial, e identificar otros posibles factores de riesgo.
3. OBJETIVOS

3.1 OBJETIVO GENERAL

Determinar la asociación entre microcefalia e infección por virus del zika en gestantes pertenecientes a una EPS de Colombia, 2017

3.2 OBJETIVOS ESPECÍFICOS

- Caracterizar la población de gestantes según variables sociodemográficas y clínicas: Edad, procedencia, pertenencia a grupo especial, semana de gestación, e infección por virus de Zika (tipo de caso) y presencia de otra alteración durante el embarazo.

- Describir la población de recién nacidos, según procedencia, presencia de microcefalia, otra alteración congénita, tipo de diagnóstico establecido.

- Comparar la incidencia de recién nacidos con y sin microcefalia/defectos congénitos, según la presencia o no de infección por zika en la madre, de manera general, y según tipo de caso, procedencia, edad materna, semana de gestación y presencia de otra alteración durante el embarazo.
4. MARCO TEÓRICO Y ESTADO DEL ARTE

4.1 GENERALIDADES SOBRE EL ZIKA

El virus del Zika es un flavivirus transmitido por la picadura del mosquito. Aunque se aisló por primera vez hace más de 60 años,(18) su impacto en la salud humana se ha tomado en consideración en los últimos 3 años a raíz de una posible relación con defectos congénitos como la microcefalia y enfermedades neurológicas como el Guillain-Barré.(12) La entrada del virus a Latinoamérica se dio a través de Brasil en enero de 2015 y algunos meses después inició el brote epidémico en Colombia.

Los síntomas agudos inducidos por el Zika son parecidos a otros flavivirus; sin embargo, la posibilidad de causar teratogénesis ha sido lo que ha encendido las alarmas en las autoridades más importantes de salud del mundo.(12) Hay varias razones para pensar que el virus se asocia con defectos congénitos, sobre todo del sistema nervioso central. En Brasil, uno de los países más afectados por el Zika, los casos de microcefalia han aumentado desde que se confirmó la presencia del virus y las cifras han sido las más altas que se hayan reportado previamente desde el año 2000.

A enero del año 2016 se reportaban 574 casos de microcefalia asociada a infección por Zika durante el periodo temprano de gestación y se confirmaba la presencia del virus en 22 de los 26 estados en las cinco regiones del país. Rassmusen (8) sugirió que, a partir de distintos criterios para probar la existencia de teratogénesis en humanos, existe suficiente evidencia científica y epidemiológica para inferir una relación causal entre infección por virus del Zika en mujeres durante el periodo prenatal y anormalidades congénitas en recién nacidos y feto (10). De acuerdo a los programas internos de vigilancia epidemiológica de la Clínica de Maternidad Rafael Calvo (CMRC), los casos de microcefalia han aumentado en el primer semestre de
2016 en comparación con años previos. Sin embargo, no se cuenta con información suficiente sobre el estado de infección por el virus.

El Center for Disease Control de Estados Unidos (CDC), recomienda realizar pruebas diagnósticas de Zika a todas las personas expuestas con signos o síntomas de infección y a los proveedores de salud, ofrecer pruebas diagnósticas a mujeres embarazadas entre las 12 semanas de exposición. Para la CMRC es esencial brindar información oportuna sobre esta infección; por tal motivo, surge la necesidad por llevar a cabo el presente trabajo de investigación.

La enfermedad por el virus del Zika (ZIKV), un flavivirus, es transmitida por el mosquito Aedes Aegypti, el cual también es vector para el virus de la fiebre amarilla, virus del dengue (DENV), y el virus del Nilo Occidental (VNO). Es un virus ARN positivo de una sola hebra (10.794 genoma-nt) que está estrechamente relacionado con el virus Spondweni.

El virus fue identificado en monos rhesus durante la vigilancia de la fiebre amarilla selvática en el Bosque Zika en Uganda en 1947, y fue reportado en los seres humanos en 1952. En 2007, se informó de un brote de ZIKV en la isla de Yap, Estados Federados de Micronesia,(19) y causó una gran epidemia en la Polinesia francesa en 2013-2014 y Nueva Caledonia, informado de casos importados de la Polinesia Francesa en 2014.(20)

En Latinoamérica ha surgido un reto importante con la aparición en Brasil de ZIKV y cocirculación con otros arbovirus (DENV y virus de Chikungunya [CHIKV]). Lo que comenzó con los primeros 16 casos confirmados de infecciones por el ZIKV en Brasil, y el primer caso autóctono de República Dominicana confirmado por OPS en junio de 2015, fueron la voz de alarma para predecir lo que actualmente sucede: cocirculación en Colombia de ZKV, DENV y CHIKV., y dado que los tres producen cuadros clínicos similares,(21) lo cual amerita un incremento en los recursos para
establecer diagnósticos diferenciales, sugiere un esfuerzo importante por parte de las autoridades en salud, y los entes académicos de la nación.

Aunque en la mayoría de brotes epidémicos de Zika, se ha confirmado que es una enfermedad predominantemente leve o asintomática, los datos de Polinesia francés documentaron una epidemia concomitante de 73 casos del síndrome de Guillain-Barré y otras condiciones neurológicas en una población de aproximadamente 270 000 habitantes, que puede representar complicaciones mayores de zika. Así mismo, el incremento en el número de casos de microcefalia en Brasil, que se manifiestan por un aparente aumento de 20 veces la incidencia de 2015 con respecto a 2014, ha llamado la atención de los servicios de salud a nivel mundial, ya que se considera que estos casos son causados por infecciones de Zika en embarazadas(21).

A pesar de la falta de una prueba definitiva que demuestre relación causal, algunas autoridades sanitarias de regiones afectadas están recomendando que las mujeres embarazadas tomen precauciones para evitar las picaduras de mosquitos e incluso retrasar el embarazo,(22) y sobre este punto en concreto la OMS recomienda llevar a cabo investigación intensiva, incluyendo estudios de casos y controles.

En una epidemia solamente de Zika, el diagnóstico puede realizarse de forma fiable por motivos clínicos. Sin embargo, el hecho que el dengue y chikungunya den como resultado cuadros clínicos similares, favorece confusiones en el diagnóstico clínico. Por otro lado, las pruebas específicas para dengue y chikungunya no siempre están disponibles, y hasta el momento no se han desarrollado pruebas comerciales para Zika.

Además, debido a que el Zika está estrechamente relacionado con el dengue, es posible que las muestras serológicas puedan reaccionar de manera cruzada, y si bien las pruebas de detección de genes, tales como las de Reacción en Cadena de
la Polimerasa pueden distinguir de forma fiable los tres virus, todavía no están ampliamente disponibles.

El 1 de febrero el año 2016 la Organización Mundial de la Salud declaró el Zika como una situación de Emergencia en Salud Pública, luego de los reportes de casos de microcefalia y SGB asociados con un incremento de los casos de infección por ZIKV en la Polinesia Francesa durante el año 2014) y en Brasil durante el período 2015 y lo que va de 2016.(23)

En septiembre de 2015, médicos del estado de Pernambuco en Brasil, notaron un aumento en los recién nacidos con microcefalia. Rápidamente, en los tres meses siguientes, el Ministerio de Salud de ese país estableció un registro de 4180 casos sospechosos, incluyendo 68 muertes, en comparación con 147 reportes llevados a cabo en 2014.(23)

Una revisión de los primeros 35 casos encontró que el 74% de las madres presentaron una erupción durante el embarazo y el 71% de los niños tenían microcefalia grave.(17) De acuerdo a las OMS,(18) se considera microcefalia cuando la circunferencia frontooccipital de la cabeza del recién nacido o del feto es igual o mayor que dos desviaciones estándares por debajo de la media para la misma edad gestacional y sexo.

4.2 ZIKA, EMBARAZO Y MICROCEFALIA

Según la OMS,(24) todas las mujeres embarazadas que potencialmente han estado expuestas a ZIKV deben ser referidas a su unidad de maternidad local para 4 ecografías semanales. Esto incluye pacientes asintomáticas, aquellas que han tenido síntomas fuera de las pruebas y pacientes que han salido negativas para ZIKV por RT-PCR; esto con el fin de detectar precozmente la presencia de
microcefalia, y debido a que también es una prueba sensible para ventriculomegalia y calcificación.

En mujeres embarazadas con ZIKV positivo por RT-PCR o con hallazgos concernientes, se debe considerar amniocentesis, y la resonancia magnética cerebral fetal puede detectar anormalidades que no se ven en el ultrasonido. Es importante recordar que la microcefalia y otras anomalías intracraneales pueden ser causadas por una serie de trastornos no relacionados con ZIKV.

El servicio de Salud de Inglaterra tiene pautas claras para evaluar mujeres embarazadas con una erupción, en particular, consejos sobre cuándo analizar la rubéola, la varicela, o parvovirus.(25) Las mujeres embarazadas deben considerar evitar viajar a áreas con brotes de ZIKV especialmente en el primer trimestre.

Una de las causas de la microcefalia es la función anormal de los centrosomas.(26) Aunque normalmente se encuentran asociados con la mitosis, estos orgánulos también están involucrados en otros procesos celulares que incluyen migración, polaridad y tráfico apropiado de vesículas. En referencia a la microcefalia,(27) la amplificació

n del número de centrosoma se ha revelado como uno de los inductores de esta condición. Ciertas proteínas tienen una doble función en la autofagia, así como la estabilidad del centrosoma. Un ejemplo particular es el gen asociado a la resistencia a la radiación ultravioleta (UV) (UVRAG). Está involucrado en la iniciación y maduración de autofagosomas,(28) así como centrosomas y estabilidad cromosómica.(29) Otro es Beclin-1, que juega un papel integral en la autofagia y se sabe que contribuye a estabilidad cromosómica en células cancerosas.(30)

En el contexto de desarrollo del cerebro neuronal, un aumento en centrosomas en ratones da como resultado un retraso en la mitosis, un aumento en la apoptosis, orientación inadecuada de las células madre neurales, diferenciación neuronal prematura y una disminución en las células progenitoras.(27) El efecto general
reduce la formación de materia cerebral que conduce a un tamaño cerebral reducido indicativo de microcefalia. Aunque los mecanismos de la patogénesis del virus del Zika parecen coincidir con los requisitos para las anormalidades en los centrosomas, hasta el momento no hay clara evidencia para probar su responsabilidad.(31)

El modelado de la infección por ZIKV en ratones gestantes tiene ciertas limitaciones ya que el ZIKV no se replica de manera eficiente en ratones, porque no son huéspedes naturales para el ZIKV. De hecho, la generación de modelos de ratones de infección por ZIKV congénita ha requerido el uso de ratones inmunodeficientes inoculados por vía subcutánea, o ratones inmunocompetentes inoculados con altas dosis de virus inyectados por vía intravenosa, una ruta artificial de infección. Por lo tanto, los modelos de primates no humanos de la patogénesis del ZIKV tienen la ventaja de modelar la infección en un huésped inmunocompetente natural. Al respecto, Nguyen et al. (32) describieron algunos resultados de la inoculación subcutánea de cuatro macacos Rhesus indios con un aislamiento de ZIKV de la Polinesia Francesa. Dos de los animales fueron inoculados durante el primer trimestre, y dos fueron inoculados a fines del segundo/tercer trimestre. La transmisión materno-fetal ocurrió en los cuatro animales, causando la infección de la placenta y una variedad de tejidos fetales. Aunque los estudios de imágenes demostraron que la tasa de crecimiento de la cabeza fetal disminuyó en el último mes de embarazo, no hubo microcefalia evidente.

Los hallazgos de Nguyen et al. tienen dos implicaciones principales: (i) la transmisión transplacentaria de ZIKV probablemente ocurre con más frecuencia en humanos de lo que se pensaba anteriormente, y (ii) muchos fetos congénitamente infectados pueden parecer normales, y la microcefalia representa uno de los varios resultados potenciales en primates. Esto conlleva a preguntarse cuáles podrían ser los efectos de la infección congénita por ZIKV en recién nacidos de apariencia normal sin microcefalia. ¿Tendrán estos recién nacidos defectos del desarrollo?
neurológico o cognitivos más sutiles? Dado el gran número de neonatos potencialmente infectados del brote de ZIKV, los estudios epidemiológicos en humanos, así como el modelado en animales congénitamente infectados, son importantes pasos a seguir para definir mejor las consecuencias más sutiles de la infección congénita por ZIKV en ausencia de microcefalia.
5. METODOLOGÍA

5.1 TIPO DE ESTUDIO

Casos y controles. Este tipo de estudio permite, a partir de la presencia de un efecto, determinar posible(s) factor(es) de riesgo. En este caso, se tienen los registros de pacientes cuyos productos nacieron con microcefalia (efecto) y al comparar con aquellas en las que no (controles) se identifican los posibles factores de riesgo, principalmente la presencia de zika.

5.2 POBLACIÓN

5.2.1 Población de referencia

Gestantes de Colombia, de los departamentos de Valle del Cauca, Chocó, Atlántico, Bolívar, Cesar, Córdoba, Magdalena y Sucre, atendidas durante el periodo 2016-2017.

5.2.2 Población accesible

Gestantes pertenecientes a una EPS (nombre no suministrado por petición de confidencialidad), de los departamentos descritos en la población de referencia, atendidas durante el período 2016/2017, con disponibilidad para suministrar información desagregada por variables de interés.

5.2.3 Población elegible

Recién nacidos de gestantes que cumplan los siguientes criterios de inclusión:

- Datos registrados durante el período de estudio.
- Información sobre el producto (nacidos vivos, mortinatos, nacidos con afecciones neurológicas, etc.).

Se excluyeron los registros con datos incompletos y/o inconsistentes, producto de la depuración de la base.
5.2.4 Muestra

Tipo de muestreo empleado fue no probabilístico: intencional o por conveniencia. La unidad de muestreo estuvo constituida por los recién nacidos con las características descritas en la población elegible. Adicionalmente, se consideró información de las madres, principalmente lo concerniente a infección por zika. El tamaño de la muestra estuvo delimitado por el número de registros que cumplían los criterios de selección: 20.430 casos, los cuales fueron divididos en dos grupos: uno conformado por productos nacidos con microcefalia y otro con recién nacidos sanos, y en ambos se indagó la presencia de infección por zika en la madre. Se decidió tomar toda la población elegible, debido a que la EPS que suministró la información indicó que necesitaba conocer los resultados en todos los sujetos que cumplían los criterios de selección.

La definición de microcefalia fue la descrita por el Protocolo de vigilancia específico para esta afección (33): “Todos los productos de la gestación, vivos y muertos quienes al momento del nacimiento o hasta el año de vida presenten una circunferencia craneal occipitofrontal por debajo del percentil 3 de acuerdo a curvas de referencia para edad y sexo o con hallazgos por neuroimágenes de alteraciones en el sistema nervioso central tales como:

- Calcificaciones intracranales.
- Ventriculomegalia.
- Atrofia cerebral.
- Anomalías de la migración celular (lisencefalia, paquigiria).
- Hidranencefalia.
- Hidrocefalia.
- Holoprosencefalia.
- Esquicenzefalia.
- Porencefalia.
- Anomalías del cuerpo calloso.
• Secuencia disruptiva del cerebro fetal.
• Alteraciones oculares (retinopatías).

El perímetro cefálico debe ser medido al nacer y confirmado a las 24 horas del nacimiento así como la realización de la ecografía transfontanelar u otra neuroimagen de acuerdo a criterio médico.

Para infección por virus del zika, se tomó la definición de caso confirmado del Instituto Nacional de Salud (34): Caso que cumple con los criterios clínicos de la infección y que presenta un resultado positivo para el virus Zika mediante RT-PCR - (o inmunohistoquímica en análisis histopatológico) realizada en el Laboratorio Nacional de Referencia del Instituto Nacional de Salud o centros colaboradores designados por el INS.

5.3 FUENTE DE INFORMACIÓN

Secundaria: Bases de datos de maternas, nacimientos y registros notificados al Sivigila, por parte de la EPSS.

5.4 RECOLECCIÓN, PROCESAMIENTO Y ANÁLISIS DE LA INFORMACIÓN

Se recibió una base de datos en Microsoft Excel ® con los registros de gestantes y sus productos, correspondientes al período 2016-2017, codificada de acuerdo al Sivigila, la cual fue revisada inicialmente por parte de un observador independiente, para control de calidad y verificación de los tipos de campos. Esta información fue migrada a SPSS V24 ® para su consolidación, depuración y análisis. Para efectos de seguridad, ninguna base fue enviada o recibida por internet/intranet, sino que fue copiada en dispositivos electrónicos de almacenamiento masivo, con backup.

Se emplearon medidas descriptivas de acuerdo con la naturaleza de las variables: cualitativas (frecuencia, porcentaje) y cuantitativas (promedio, desviación estándar), y medidas de relación para el cruce de variables: chi cuadrado, valor de p (<0,05),
OR e IC95%; estas últimas si bien se emplean en estudios analíticos, pueden emplearse en transversales para sugerir "posible" asociación estadística, dada la posibilidad de tener variables dependientes e independientes según plausibilidad biológica.

5.5 VARIABLES

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Definición</th>
<th>Naturaleza</th>
<th>Nivel de medición</th>
<th>Indicadores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microcefalia</td>
<td>Productos de la gestación, vivos y muertos quienes al momento del nacimiento o hasta el año de vida presenten una circunferencia craneal occipitofrontal por debajo del percentil 3 de acuerdo a curvas de referencia para edad y sexo o con hallazgos por neuroimágenes de alteraciones en el sistema nervioso central</td>
<td>Cualitativa</td>
<td>Nominal</td>
<td>Sí; No</td>
</tr>
<tr>
<td>Infección materna por zika</td>
<td>Caso confirmado para zika, que cumple con los criterios clínicos de la infección y que presenta un resultado positivo para el virus Zika mediante RT-PCR - (o inmunohistoquímica en análisis histopatológico) realizada en el Laboratorio Nacional de Referencia del Instituto Nacional de Salud o centros colaboradores designados por el INS.</td>
<td>Cualitativa</td>
<td>Nominal</td>
<td>Sí; No</td>
</tr>
<tr>
<td>Edad materna</td>
<td>Años cumplidos por la madre al momento del parto</td>
<td>Cuantitativa</td>
<td>Razón</td>
<td>Edad materna en años</td>
</tr>
<tr>
<td>Semanas de gestación</td>
<td>Edad gestacional determinada por ecografía</td>
<td>Cuantitativa</td>
<td>Razón</td>
<td># de semanas de gestación</td>
</tr>
<tr>
<td>Lugar de residencia</td>
<td>Sitio donde reside la madre regularmente.</td>
<td>Cualitativa</td>
<td>Nominal</td>
<td>Ciudad, municipio o vereda</td>
</tr>
<tr>
<td>Controles prenatales</td>
<td>Número de veces que la madre acudió a control médico durante el embarazo.</td>
<td>Cuantitativa</td>
<td>Razón</td>
<td># de controles prenatales realizados</td>
</tr>
<tr>
<td>Tipo de parto</td>
<td>Vía utilizada para dar fin a la gestación</td>
<td>Cualitativa</td>
<td>Nominal</td>
<td>Natural; Cesárea</td>
</tr>
<tr>
<td>Otra enfermedad del RN</td>
<td>Presencia de otra afección (morbilidad) en el recién nacido.</td>
<td>Cualitativa</td>
<td>Nominal</td>
<td>Sí; No</td>
</tr>
</tbody>
</table>

Variable dependiente: Microcefalia
Variable independiente: Infección materna por zika
Otras variables independientes para control: Edad de la madre; semanas de gestación; lugar de residencia; número de controles prenatales; tipo de parto; otra enfermedad del recién nacido.

5.6 CONTROL DE ERRORES Y SESGOS

Se llevó a cabo un análisis estratificado para controlar el posible efecto de las variables independientes secundarias, sobre la variable dependiente. Así mismo, se tuvo en cuenta la revisión por parte de observadores independientes, sobre el análisis llevado a cabo. El sesgo de información y el de selección fue controlado, a través de las definiciones de caso para zika y microcefalia provistas por el Instituto Nacional de Salud, y trabajar solamente con casos confirmados.

5.7 ASPECTOS ÉTICOS

El estudio fue avalado por el comité de ética de la Universidad del Norte. Previo al proceso de ejecución del proyecto, se solicitó autorización a la EPS para acceder a la información de la base de datos. De acuerdo con la Resolución 008430 de 1993 del Ministerio de Salud de la República de Colombia, que establece las normas científicas, técnicas y administrativas para la investigación en salud se permite considerar a la presente investigación como un estudio sin riesgo para la población estudiada, debido a que no se realiza ninguna intervención o modificación intencionada de las variables biológicas, fisiológicas, sicológicas o sociales del paciente.
6. RESULTADOS

Tabla 1. Características sociodemográficas y obstétricas de gestantes pertenecientes a una EPS del régimen subsidiado. 2016-2017, de manera general y según presencia de microcefalia

<table>
<thead>
<tr>
<th>Variables</th>
<th>Microcefalia</th>
<th>%Total</th>
<th>Fisher</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%Sí (n=15)</td>
<td>%No(n=20415)</td>
<td></td>
</tr>
<tr>
<td>Edad</td>
<td></td>
<td></td>
<td>0,218$</td>
</tr>
<tr>
<td><20</td>
<td>3 (20,0)</td>
<td>5226 (25,6)</td>
<td>5230 (25,6)</td>
</tr>
<tr>
<td>20a29</td>
<td>8 (53,3)</td>
<td>10881 (53,3)</td>
<td>10889 (53,3)</td>
</tr>
<tr>
<td>30a39</td>
<td>4 (26,7)</td>
<td>3818 (18,7)</td>
<td>3820 (18,7)</td>
</tr>
<tr>
<td>40a49</td>
<td>0 (0,0)</td>
<td>490 (2,4)</td>
<td>490 (2,4)</td>
</tr>
<tr>
<td>Etnia</td>
<td></td>
<td></td>
<td>---</td>
</tr>
<tr>
<td>Ninguna</td>
<td>13 (86,7)</td>
<td>16332 (80)</td>
<td>16344 (80,0)</td>
</tr>
<tr>
<td>Negra*</td>
<td>2 (13,3)</td>
<td>2960 (14,5)</td>
<td>2962 (14,5)</td>
</tr>
<tr>
<td>Indígena</td>
<td>0 (0,0)</td>
<td>1041 (5,1)</td>
<td>1022 (5,0)</td>
</tr>
<tr>
<td>Raizal</td>
<td>0 (0,0)</td>
<td>61 (0,3)</td>
<td>61 (0,3)</td>
</tr>
<tr>
<td>Palanquera</td>
<td>0 (0,0)</td>
<td>20 (0,1)</td>
<td>20 (0,1)</td>
</tr>
<tr>
<td>Riesgo obstétrico</td>
<td></td>
<td></td>
<td>0,638</td>
</tr>
<tr>
<td>Alto</td>
<td>10 (76,9%)</td>
<td>11658 (57,3%)</td>
<td>11666 (57,1)</td>
</tr>
<tr>
<td>Bajo</td>
<td>3 (23,1%)</td>
<td>8687 (42,7%)</td>
<td>8764 (42,9)</td>
</tr>
<tr>
<td>Controles prenatales</td>
<td></td>
<td></td>
<td>---</td>
</tr>
<tr>
<td>1a5</td>
<td>0 (0,0%)</td>
<td>5134 (25,3%)</td>
<td>5251 (25,7)</td>
</tr>
<tr>
<td>6a10</td>
<td>13 (100%)</td>
<td>15160 (74,7%)</td>
<td>15179 (74,3)</td>
</tr>
<tr>
<td>Tipo de parto**</td>
<td></td>
<td></td>
<td>0,591</td>
</tr>
<tr>
<td>Cesárea</td>
<td>7 (58,3%)</td>
<td>7976 (39,3%)</td>
<td>8009 (39,2)</td>
</tr>
<tr>
<td>Vaginal</td>
<td>5 (41,7)</td>
<td>12318 (60,7%)</td>
<td>12401 (60,7)</td>
</tr>
</tbody>
</table>

Fuente: Base de datos de una aseguradora en salud del régimen subsidiado

$Al comparar las categorías <20+20 a 29 y 30ª39+40 a 49; * Mulato, Afrocolombiano, Afrodescendiente; **n=13711; $n=13; &n=20345; $ n=12; $ n=13699; $ c n=20294

El promedio de edad de las participantes fue 24,3 años (DE+/6,5), y la mayoría, como muestra la tabla 1 (78,9%) tenían menos de 30 años, mientras que las que presentaron microcefalia fue de 7,3%; llama la atención que alrededor de una cuarta parte hayan tenido menos de 20 años. Con respecto a la pertenencia étnica, solamente 5% eran indígenas y la mayoría (80%) no tenían pertenencia étnica. En los casos de microcefalia solo hubo registros de raza negra (13,3%) y ninguna (86,7%). En cuanto al riesgo obstétrico, más de la mitad fueron consideradas como “alto”: 74,3%, mientras que entre los casos con presencia de microcefalia fue de...
76,9%; tuvieron entre 6 y 10 controles prenatales y 39,2% de las que se tenía información sobre esta variable (n=13711) fueron atendidas por cesárea. El gráfico 1, a continuación, resume la distribución de los grupos de edad de las participantes, anteriormente descrita.

Por otro lado, en el gráfico se resume la distribución de las gestantes según se procedencia étnica. Como se mencionó anteriormente, el 80% de las gestantes no se identificó con ninguna procedencia étnica, la raza negra fue la de mayor participación con respecto a total (14,5)
Por último, en el Gráfico 3, se muestra la distribución de gestantes según riesgo obstétrico, controles prenatales y el tipo de parto. Mayoritariamente hubo un alto riesgo obstétrico (57,1%), de 6 a 10 controles prenatales (74,3%) y parto vaginal (60,7%).
Gráfico 3. Distribución de gestantes pertenecientes a una EPS del régimen subsidiado, según riesgo obstétrico, controles prenatales y tipo de parto.

<table>
<thead>
<tr>
<th>Patologías</th>
<th>%Porcentaje (n=20430)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hipertensión inducida por la gestación</td>
<td>511 (2,5)</td>
</tr>
<tr>
<td>Zika</td>
<td>286 (1,4)</td>
</tr>
<tr>
<td>Sífilis gestacional</td>
<td>123 (0,6)</td>
</tr>
<tr>
<td>VIH+</td>
<td>61 (0,3)</td>
</tr>
<tr>
<td>Microcefalia*</td>
<td>20 (0,1)</td>
</tr>
<tr>
<td>HBsAg+</td>
<td>20 (0,1)</td>
</tr>
</tbody>
</table>

Fuente: Base de datos de una aseguradora en salud del régimen subsidiado

La tabla 2 muestra que el 2,5% de las gestantes tuvo hipertensión inducida por el embarazo, y en 0,6% de los casos hubo positividad para sífilis gestacional en la prueba de VDRL, mientras que 0,3% fueron VIH+ confirmadas y 0,1% fueron positivas para Antígeno de superficie de hepatitis B. De la misma forma, 1,4% de las madres fueron casos confirmados de zika y un 0,1% tuvieron hijos con microcefalia. El gráfico 4 resume la distribución de la presencia de comorbilidades, anteriormente descritas.

Fuente: Tabla 2

<table>
<thead>
<tr>
<th>Microcefalia</th>
<th>Sí (n=15)</th>
<th>No (n=20415)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zika Sí (n=293)</td>
<td>12 (80,0%)</td>
<td>281 (1,38%)</td>
</tr>
<tr>
<td>Zika No (n=20137)</td>
<td>3 (20,0%)</td>
<td>20134 (98,62%)</td>
</tr>
</tbody>
</table>

OR: 286,6; IC%:80,42-1021,21 Fisher: 0,0000

Fuente: Base de datos de una aseguradora en salud del régimen subsidiado

Según la tabla 3, el 80% de los casos con microcefalia se relacionaron con madres con zika, a diferencia de 1,4% de los que no tuvieron microcefalia, siendo estadísticamente significativa esta relación (Fisher:0,0000), aunque el intervalo de confianza (IC95%: 80,42-1021,21) para el OR (286,6) fue bastante amplio, lo cual es consecuente con los números que se contrastaron.

El siguiente gráfico muestra lo anteriormente descrito.

Fuente: Tabla 3
<table>
<thead>
<tr>
<th></th>
<th>Microcefalia</th>
<th>OR Crudo</th>
<th>OR ajustado</th>
<th>Fisher</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sí</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edad</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zika+</td>
<td>30a49 <30</td>
<td>2</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Zika-</td>
<td>30a49 <30</td>
<td>10</td>
<td>221</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>1,357</td>
<td>(0,43-4,26)</td>
<td>0,395</td>
</tr>
<tr>
<td></td>
<td>4254</td>
<td>1,366</td>
<td>(0,43-4,36)</td>
<td></td>
</tr>
<tr>
<td>Riesgo obstétrico</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zika+</td>
<td>Alto</td>
<td>9</td>
<td>173</td>
<td></td>
</tr>
<tr>
<td>Zika-</td>
<td>Bajo</td>
<td>1</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alto</td>
<td>1</td>
<td>11490</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bajo</td>
<td>2</td>
<td>8644</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,48</td>
<td>(0,68-9,02)</td>
<td>0,581</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,03</td>
<td>(0,25-4,19)</td>
<td></td>
</tr>
<tr>
<td>Controles prenatales</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zika+</td>
<td>1a5</td>
<td>0</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Zika-</td>
<td>6a10</td>
<td>10</td>
<td>204</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1a5</td>
<td>0</td>
<td>5130</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6a10</td>
<td>3</td>
<td>14953</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Pertenencia étnica</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zika+</td>
<td>Sí</td>
<td>1</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Zika-</td>
<td>No</td>
<td>11</td>
<td>269</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sí</td>
<td>1</td>
<td>4067</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>2</td>
<td>16067</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,61</td>
<td>(0,14-2,73)</td>
<td>0,399</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,01</td>
<td>(0,40-9,90)</td>
<td></td>
</tr>
<tr>
<td>Sífilis (VDRL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zika+</td>
<td>Reactivo</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Zika-</td>
<td>No Reactivo</td>
<td>10</td>
<td>209</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reactivo</td>
<td>0</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No Reactivo</td>
<td>3</td>
<td>20006</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>HTA embarazo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zika+</td>
<td>Sí</td>
<td>1</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Zika-</td>
<td>No</td>
<td>9</td>
<td>176</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sí</td>
<td>0</td>
<td>493</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>3</td>
<td>17635</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>ElisaVIH+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zika+</td>
<td>Sí</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Zika-</td>
<td>No</td>
<td>10</td>
<td>211</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sí</td>
<td>0</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>13</td>
<td>20299</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Tipo de parto</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zika+</td>
<td>Cesárea</td>
<td>5</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>Zika-</td>
<td>Parto</td>
<td>4</td>
<td>123</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cesárea</td>
<td>2</td>
<td>5307</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Parto</td>
<td>1</td>
<td>8196</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,16</td>
<td>(0,68-6,82)</td>
<td>0,191</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,30</td>
<td>(0,71-7,46)</td>
<td></td>
</tr>
<tr>
<td>HBsAg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zika+</td>
<td>Positivo</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Zika-</td>
<td>Negativo</td>
<td>10</td>
<td>211</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Positivo</td>
<td>0</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Negativo</td>
<td>3</td>
<td>20122</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Base de datos de una aseguradora en salud del régimen subsidiado
La edad y las variables clínicas de las pacientes fueron recodificadas para trabajar con dos estratos en cada una de ellas. Según la tabla 4 para la relación con HBsAg, Elisa VIH+, hipertensión inducida durante el embarazo, y VDRL positivo para sífilis y número de controles prenatales. Para riesgo obstétrico, Sífilis, HTA durante el embarazo, Elisa VIH+, pertenencia étnica y HbsAg la diferencia entre el OR crudo y el ajustado es mayor a 10%, lo cual indica que probablemente llegaran a ser factores de confusión, aunque esta relación no es significativa.
7. DISCUSION

La microcefalia es una anomalía congénita frecuente con causas de origen ambiental y genético, aunque, también existe evidencia que apunta a una relación con el virus del Zika durante el embarazo con esta y otras malformaciones. Los datos recolectados por el Instituto Nacional de Salud muestran una relación entre el incremento de maternas infectadas con el virus del ZIKA y un incremento de notificaciones de casos de microcefalia y otras malformaciones.

Los datos recolectados dan cuenta de una incidencia de zika en maternas inferior a lo reportado en Yap (35) y en la Polinesia Francesa después de los brotes en estas regiones. No es posible determinar con certeza el momento de la infección del virus Zika antes, después o durante el embarazo en un estudio de casos y controles, pero un estudio de cohortes podría evaluar el momento de la aparición de la infección por el virus Zika y relacionarlo con el amplio espectro de posibles resultados adversos.

Para la muestra utilizada se obtuvo como principal resultado que la relación entre Zika y microcefalia en gestantes pertenecientes a una EPS del régimen subsidiado en Colombia fue estadísticamente significativa (Fisher:0,0000), sin embargo, el intervalo de confianza fue amplio (IC95%: 80,42-1021,21) para el OR (286,6); los resultados obtenidos son congruentes con Rasmussen (11) quien sugiere que existe una relación causal entre infección por virus del Zika en mujeres durante el periodo prenatal y anormalidades congénitas en recién nacidos y fetos. Los resultados miden y confirman la relación de la tendencia con respecto al seguimiento epidemiológico que se hizo en el periodo del aumento de casos de infección del virus del Zika por parte del Instituto Nacional de Salud.

La asociación entre microcefalia e infección por virus Zika confirmada en laboratorio observada en el presente estudio agrega la evidencia epidemiológica necesaria (en
la presencia de un grupo de control) al proceso de confirmación de la causalidad (36,37)

Por otra parte, las variables edad y clínicas no tuvieron significancia estadística con excepción del número de controles prenatales. Las comorbilidades más comunes fueron hipertensión inducida por el embarazo y zika. La mayoría de gestantes tuvo alto riesgo obstétrico (57%) y de 6 a 10 controles prenatales (74,3%). La variable de procedencia étnica en la mayoría de los casos fue “ninguna” (80%), y dentro del restante la raza negra (14,5%) fue la predominante, y mayoritariamente las gestantes tenían entre 20 y 29 años (53,3%) y un porcentaje importante (25,6%) tenía menos de 20 años.

A partir de lo anterior se podría establecer que, para distintas variables sociodemográficas como procedencia étnica, edad etc., y la mayoría de las clínicas no hubo suficiente evidencia estadística para determinar si estas tenían alguna relación con la infección del virus y las malformaciones congénitas; desde el punto socioeconómico pudo haberse profundizado el análisis, sin embargo, la disponibilidad de la información frente a ello es limitada. En la base de datos a la que se tuvo acceso no capturó en su totalidad variables y fue relativamente limitada en términos generales. En futuros estudios se podrían ampliar estos resultados usando más información de otras empresas promotoras de salud para ampliar la muestra y mejorar los resultados.

En todo caso, los resultados sugieren que la detección por IgM (protocolo CDC) en madres con zika y neonatos con microcefalia es un método adecuado para el diagnóstico de infección congénita por el virus del Zika. La cuestión de la reactividad cruzada con otros virus, particularmente el del dengue (38) podrían no ser relevantes en neonatos, porque la infección intrauterina con dengue es poco probable, y la IgM materna no atraviesa la placenta.
Un informe sobre el virus del Zika y el virus del dengue específico en neonatos con microcefalia mostró la utilidad de las pruebas de IgM específico para Zika virus (39) y la detección de IgM específica del virus Zika en el suero es una alternativa útil cuando la toma en el líquido cefalorraquídeo es un desafío.

Mientras tanto, la comprensión de la biología de la infección por ZIKV en el embarazo se basa en los casos descritos clínicamente en mujeres embarazadas con infección sintomática. Por lo tanto, se tiene poco conocimiento de los efectos de infecciones leves o asintomáticas por ZIKV o ZIKV en el embarazo temprano, cuando las mujeres pueden desconocer el embarazo. El riesgo de eventos adversos puede ser mayor en infecciones sintomáticas, pero las infecciones leves son probablemente más comunes y, por lo tanto, también pueden contribuir sustancialmente a la carga general.
8. CONCLUSIONES Y RECOMENDACIONES

Concluimos que, en la población estudiada la microcefalia es, muy probablemente, un resultado de la infección congénita por el virus del Zika. La lista de infecciones congénitas normalmente referida como TORCH (toxoplasmosis, otras [sífilis, varicela-zoster, parvovirus B1], rubéola, citomegalovirus y herpes) debería ser renombrada como TORCHZ, y se debe estar preparados para consecuencias a largo plazo de las manifestaciones del síndrome de Zika congénito.

Se necesita más investigación para comprender mejor las posibles implicaciones de estas observaciones, por ejemplo, se debe hacer un estudio de casos y controles en el que se escojan al azar los controles del total de pacientes que no tienen microcefalia. Es probable que la rápida propagación de ZIKV en todo el mundo sea un fuerte impulso para la investigación colaborativa sobre las propiedades biológicas del virus, particularmente porque el riesgo de infecciones por virus neurotrópicos y teratogénicos, lo que supone una gran carga emocional y económica para la sociedad.

Además, la microcefalia es solo un posible resultado adverso en un espectro de afecciones que pueden formar parte del síndrome de Zika congénito. Se ha observado un aumento a nivel de la población en las anomalías del sistema nervioso central tanto en la Polinesia Francesa como en Brasil, pero se necesitan más datos para refinar las estimaciones de riesgo específicas de la edad gestacional para la microcefalia y estos otros resultados relacionados con la infección por ZIKV, especialmente para evaluar las tasas de infección a nivel de la población y los efectos del síndrome de Zika congénito en todas las edades gestacionales en relación con la infección sintomática y asintomática.

Aunque se necesita mucha investigación para definir los aspectos críticos de la infección, hay mucho por hacer de inmediato. Un punto vulnerable para la
transmisión del virus Zika es el vector. Desafortunadamente, los esfuerzos de control de mosquitos no han logrado reducir la propagación de muchos patógenos similares, incluidos los virus del dengue y el chikungunya, que son transmitidos por las mismas especies de Aedes y se están propagando en las mismas comunidades actualmente afectadas por el virus Zika. Quizás esta nueva amenaza ayude a impulsar tales esfuerzos de control con el uso de enfoques antiguos y nuevos. Las mujeres deben tener acceso a servicios de atención médica relevantes, incluidos anticonceptivos, diagnósticos y servicios de interrupción del embarazo. Y los niños afectados necesitan tener cuidado, toda vez que los brotes ponen a prueba la infraestructura de salud pública y requieren una respuesta sustancial.
REFERENCIAS BIBLIOGRÁFICAS

17. Schuler-Faccini L, Ribeiro EM, Feitosa IML, Horovitz DDG, Cavalcanti DP, Pessoa A, et al. Possible Association Between Zika Virus Infection and

