Mostrar el registro sencillo del ítem

dc.contributor.advisorZurek Varela, Eduardo Enrique
dc.contributor.authorMoreno Trillos, Silvia Carolina
dc.date.accessioned2022-04-01T19:12:39Z
dc.date.available2022-04-01T19:12:39Z
dc.date.issued2022
dc.identifier.urihttp://hdl.handle.net/10584/10206
dc.description.abstractLung cancer causes more deaths globally than any other type of cancer. To determine the best treatment, detecting EGFR and KRAS mutations is of interest. However, non-invasive ways to obtain this information are not available. In this study, an ensemble approach is applied to increase the performance of EGFR and KRAS mutation prediction from CT images using a small dataset. A new voting scheme, Selective Class Average Voting (SCAV) is proposed and its performance is assessed both for machine learning models and Convolutional Neural Networks (CNNs). For the EGFR mutation, in the machine learning approach, there was an increase in the Sensitivity from 0.66 to 0.75, and an increase in AUC from 0.68 to 0.70. With the deep learning approach an AUC of 0.846 was obtained with custom CNNs, and with SCAV the Accuracy of the model was increased from 0.80 to 0.857. Finally, when combining the best Custom and Pre-trained CNNs using SCAV an AUC of 0.914 was obtained. For the KRAS mutation both in the machine learning models (0.65 to 0.71 AUC) and the deep learning models (0.739 to 0.778 AUC) a significant increase in performance was found. This increase was even greater with Ensembles of Pre-trained CNNs (0.809 AUC). The results obtained in this work show how to effectively learn from small image datasets to predict EGFR and KRAS mutations, and that using ensembles with SCAV increases the performance of machine learning classifiers and CNNs.
dc.formatapplication/pdfes_ES
dc.format.extent78 páginases_ES
dc.language.isoenges_ES
dc.publisherUniversidad del Nortees_ES
dc.titleEGFR and KRAS mutation prediction on lung cancer through medical image processing and artificial intelligencees_ES
dc.typeTrabajo de grado - Doctoradoes_ES
dc.publisher.programDoctorado en Ingeniería de Sistemas y Computaciónes_ES
dc.publisher.departmentDepartamento de ingeniería de sistemases_ES
dc.description.degreelevelDoctoradoes_ES
dc.publisher.placeBarranquilla, Colombiaes_ES
dc.rights.creativecommonshttps://creativecommons.org/licenses/by/4.0/es_ES
dc.type.coarhttp://purl.org/coar/resource_type/c_db06es_ES
dc.type.driverinfo:eu-repo/semantics/doctoralThesises_ES
dc.type.contentTextes_ES
dc.type.versioninfo:eu-repo/semantics/updatedVersiones_ES
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaes_ES
dc.description.degreenameDoctor en Ingeniería de Sistemas y Computaciónes_ES
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2es_ES
dcterms.audience.educationalcontextEstudianteses_ES
dc.subject.lembProcesamiento de imágenes -- Técnicas digitales
dc.subject.lembMedicina -- Procesamiento de datos
dcterms.audience.professionaldevelopmentDoctoradoes_ES
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesses_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem