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ABSTRACT 

 

This paper proposes an optimization based approach for modeling and solving the logistic 

processes of deliveries scheduling and product accommodation during loading with a 

heterogeneous fleet of vehicles. The approach focuses on the case of products with “low 

density values” (low cost per unit weight) and high heterogeneous volume and weight, and 

with traveling large distances to different zones, in which transportation costs constitute a 

very important proportion of total logistic costs. 

The proposed approach consists of a two-phase strategy: The first phase uses a “Cutting 

Stock Problem” formulation to define utilization areas inside trucks assigned to each 

product family. This task is achieved by minimizing the number of required vehicles and 

long-haul transportation costs as a function of the vehicle size, considering a set of 

predefined solutions for feasible and efficient loading (patterns), obtained as a result of the 

accumulated experience. The second phase consists of Bin Packing Problem version with a 

known number of bins, which were previously determined in the first phase of the 

approach. In this phase, different orders from a set of customers are assigned to each truck 

by obeying the predefined utilization areas per product category obtained in the first phase 

while minimizing the number of visits of each truck. 

The results show that the proposed model addresses the analyzed problem in an efficient 

manner, which is reflected in reasonable resolution times and costs from a practical 

implementation perspective. Additionally, it is observed that long-haul delivery costs and 

vehicle utilization tend to improve with the increase of the utilized number of patterns even 

when the execution time is incremented. 

Keywords: loading vehicles, delivery optimization, shipping scheduling, integer 

programming. 

 

  



1. INTRODUCTION 

In the current highly competitive business environment, obtaining comparative advantages 

is essential to staying competitive in the marketplace, particularly as a consequence of price 

competition. One of the main opportunities for significant cost reduction and increase the 

company´s efficiency is found in the logistic area, which is responsible of locating the 

correct products at the adequate location, at the right moment and desired condition by 

yielding the highest company profit. One of the main challenges of logistics area is to 

design and operate a supply chain so that total systemwide cost are minimized, while 

systemwide levels of service are maintained (Simchi-Levi, et al., 2008). 

In this context, the current research is aimed to reduce the logistic cost by specifically 

optimizing loading processes, accommodation and delivery of trucks. In order to achieve 

this challenge, a practical two-phase optimization based approach is proposed for 

addressing truck loading issues in cases of low value density products, highly 

heterogeneous and incompatible with each other that are not possible to palletize. 

The addressed problem in this research is pertinent for the case of companies that manages 

a range of products with the aforementioned characteristics. A company receives orders 

from multiple clients and needs to solve the problem of accommodating products in bins 

(trucks) and programming the truck dispatch to meet the demand while minimizing costs. 

Many companies outsource transportation services to logistics partners that usually have a 

heterogeneous fleet of vehicles. The freight for a certain destination may have a fixed 

component that depends on the type of utilized vehicle and a variable component according 

to the number of served clients. Therefore, the freight does not depend significantly on the 

accommodated quantity that is finally shipped in the vehicle, so that the company´s interest 

is to take advantage of its maximum capacity. 

The majority of the company customers are located in distant cities of the production plant 

and distribution center, as shown in Figure 1. Consequently, in terms of costs, 

transportation among cities has a major relevance than routing within each zone. 

Additionally, orders tend to be large, which entails that a same vehicle serves a small 

number of clients. 



 

Figure 1 Distances between zones versus interzone distances for the Colombian case  

 

In order to solve the real world complex problem presented in this study, the proposed 

approach takes advantages of the company experience with historical achieved dispatching 

records. The scheduling process of dispatching vehicles and product accommodation in 

vehicles has been performed manually and is time-consuming. These records (which define 

pseudo-efficient patterns of loading trucks) are useful for the approach presented in this 

research. 

When analyzing the described situation, considering the nature of the transported products 

and the payment scheme to carriers, a further improvement in truck capacity is a key for 

cost reduction, i.e., achieve an improved product accommodation inside trucks. 

Due to the high heterogeneity and incompatibility among different handled products and 

seeking to take advantage of historical records of dispatches carried out by the company 

(which establish loading patterns of feasible trucks), a resolution approach was employed 

where these records are considered as a database of possible solutions. Thus, the 

optimization model will search the best fit to the demanded items for the clients. 



Summarizing, the objective of this research is to present a practical approach useful to 

support the decision-making process, loading planning, and dispatching of trucks of a 

company. 

The remainder of the manuscript is organized as follows. Section 2 discusses approaches 

that are usually developed to solve problems that are similar to the case analyzed in this 

study, in addition being support for building and understanding the proposed approach. 

Section 3 presents the proposed optimization models. Section 4 presents an example that 

illustrates a model for a small scale case. Subsequently, an applied case of a Colombian 

company from the laminated steel sector is presented in Section 5. Finally, conclusions and 

final remarks are presented in Section 6. 

2. BACKGROUND 

The vehicle loading problem that gave rise to the current research has been addressed 

usually as a Container Loading Problem (CLP) with different variations. CLP may be 

interpreted as a geometric allocation problem, in which the three dimensions of small items 

must be assigned to a container. Typical models optimize the area (taking advantage of the 

unfilled container space) by fulfilling two basic restrictions: i) all objects must be 

completely inside of the container, and ii) the larger objects cannot superimpose one of 

smaller size (Bortfeldt & Wäscher, 2012). 

The CPL problem may be addressed as a minimization or a maximization problem. In the 

first case, it is assumed that there are sufficient containers available for loading a certain 

quantity of items, so that the minimum number of containers is employed. Regarding the 

second case, a restriction exists that provides a limited quantity of containers, in order to 

load only a part of the items that seeks that the loaded item value should be the maximum 

possible (Bortfeldt & Wäscher, 2012). This study addresses the problem as a minimization 

case. 

A set of variations of CLP exist in the literature depending on the problem conditions. For 

the minimization problem case, it is feasible to establish a categorization, as presented in 

Table 1 (Wäscher, et al., 2007). 

  



Table 1 CLP minimizing categorization according to the problem conditions (Wäscher, et 

al., 2007). 

  
Item or product 

classification 

Low heterogeneous 
Highly 

heterogeneous 
Container 

characteristics 
  

All fixed sizes 

Identical 

Single Stock-Size 

Cutting Stock 

Problem (SSSCSP)  

Single Bin-Size Bin 

Packing Problem 

(SBSBPP)  

Low heterogeneous 

Multiple Stock-Size 

Cutting Stock 

Problem (MSSCSP)  

Multiple Bin-Size 

Bin Packing 

Problem 

(MBSBPP):  

Highly 

heterogeneous 

Residual Cutting 

Stock Problem 

(RCSP):  

Residual Bin 

Packing Problem 

(RBPP)  

 

In addition to the aforementioned, the majority of the cases includes restrictions of vehicle 

capacity, loading mechanisms, orientation, positioning, stacking, stability, and 

compatibility of items or objects (Bortfeldt & Wäscher, 2012), involve an increase in 

complexity of the CLP solution for both the proposed scenario model and the resolution 

model. This leads to the frequent need of implementing heuristic or approximated methods, 

as the two procedures employed sequentially by Hassler & Talbot (1990). The first 

procedure is the stacking of items or objects, and the second procedure is the location of 

piles of objects. At the same time, Portmann (1990) proposes an approximation that fills the 

container with items in a bottom-up manner, while Gehring et al (1990) generate vertical 

layers in the container filling layer by layer. The methods that present the best results in the 

optimization process are metaheuristics such as GA genetic algorithms.  An application is 

the study performed by Gehring & Bortfeldt (1997), who analyzed the loading case of 

highly heterogeneous products, and Sheng, et al. (2014), who analyzed a heuristic binary 

tree search method (HBTS) for the 3D-CLP, and includes full support constraint, 

orientation constraint and guillotine cutting constraint in the algorithm. The algorithm 

includes several steps, like the case of current research. 

In more recent investigations they have tried different approaches seeking greater 

computational efficiency, i.e., less runtime. Araya & Riff (2014) present a beam search 

approach, and makes a comparison of results with the state of art, concerning runtimes and 

computational optimization. Similarly, Wei, et al. (2015) compares the results with the state 

of art in terms of both solution quality and computation time, introducing an approach that 

combines a prototype column generation method with a goal-driven strategy to CLP. 



The complementary problem included in this study considers the Vehicle Routing Problem 

(VRP), which is well-known in the literature since in Dantzig & Ramser (1959) addressed 

it with a linear programming formulation. Subsequently, Clarke y Wright developed a 

known heuristics that improves the obtained results with an approach of Dantzig-Ramser. 

This marked the beginning of the development of a large number of studies proposing 

solutions to the VRP (Maffioli, 2003). Mere optimization methods such as linear 

programming and “branch and bound” processes are employed to solve small and medium 

size instances with relatively simple restrictions, whereas heuristics and metaheuristics 

obtain close to optimal solutions for problems with medium to large size problems (De la 

Cruz, et al., 2013). 

However, since the problem addressed in this study is related to long distance vehicle 

dispatching, transportation costs between the factory and different zones are an important 

aspect to consider. A major cost reduction is obtained when reducing the number of 

vehicles to employ, and routing becomes less significant within each zone or city for very 

short distances when compared to routing between cities. Thus, routing is not included in 

the process, and transportation is limited between dispatching center and zones. Once 

clients are assigned to each vehicle, the routing problem is similar to the travel salesman 

problem. 

In summary, this study involves a highly complex problem as a result of the inclusion of a 

set of compatibility restrictions between products in the model, and the simultaneous 

solution of vehicle loading problems, efficient assignment of items to a heterogeneous fleet, 

and dispatching to serve the client demand. A two phase strategy is proposed to address this 

problem. The first phase is the derivative of the Cutting Stock Problem (CSP), and the 

second phase is the application of the Bin Packing Problem (BPP). 

2.1 Cutting Stock Problem 

The Cutting Stock Problem (CSP) is a linear programming model that consists of dividing 

or cutting raw material in smaller size to fulfill client orders. The way an element is cut is 

known as cut pattern, and each pattern contributes to satisfy part of customer demands for 

each product size including a certain amount of material scrap (Reinertsen & Vossen, 

2010). 

This problem often has applications to a variety of manufacturing industries such as paper, 

cardboard, textile, timber, metallurgic, which require laminated cuts or coils of raw material 

to produce pieces of certain dimensions to minimize material loss (Carrascosa, et al., 1997). 

The first formulation of the CSP was presented by Kantorovich in 1939. However, the 

major advancement in the resolution of this type of problems was performed by Gilmore & 

Gomory (1961) and Gilmore & Gomory (1963), who employed a cut pattern generation 



technique to minimize the loss of material using linear programming (Haessler & Sweeney, 

1991).  

Starting from the classical cutting stock model of Gilmore and Gomory (1961), Furini, et 

al. (2012) proposed a two-step approach. The first is a column generation based heuristic 

algorithm, and the second step is a mixed integer linear programming model (MILP). The 

paper presents the evaluation of the proposed approach in different computational 

experiments and compare the results the state of the art. 

Dyckhoff (1990) discussed the close existing relationship between the Cutting Stock 

Problem and the Packing Problem; both are logical structure as two groups of basic data, 

the stock (large items) and the list or order book (small items), and both realizes patterns 

being geometric combinations of small items assigned to large objects (Dyckhoff, 1990). 

An extension of the model proposed by Dyckhoff (1990) for the one-dimensional cutting 

stock problem, was propose by Silva, et al. (2010) for the two-dimensional case. The 

relevance of this article is to propose an integer programming model like the case of current 

research. 

CSP may be adapted considering the finished products as raw material, which are not cut 

physically, but divided in different containers with different loading capacities of the 

product and representing a pattern. The losses are represented as not employed truck 

loading capacity. Therefore, when minimizing unused capacity and maintaining a constant 

served demand, a reduction in the number of containers is obtained as a result (required 

vehicles for dispatching products). Figure 2 presents a description of this approximation 

with predefined loading patterns used efficiently to organize dispatching ordered items. The 

CSP planned shipments, taking as input a list of orders, with different demand for each 

product; and a list of load patterns, with different capacity for each product.  



 

Figure 2 CSP schema 

2.2 Bin Packing Problem 

The BPP is considered one of the most fundamental and most current research topics in 

combinatorial optimization. In the classic BPP, a series of containers with limited capacity 

and a set of elements with known weight are presented, whose activity is to assign articles 

to a set of containers without exceeding their capacities and minimizing the number of 

required containers (Casazza & Ceselli, 2014).  

A specific case of BPP identified as Variable Cost and Size Bin Packing Problem 

(VCSBPP), employs different types of containers that vary with capacity and price (Baldi, 

et al., 2012). Haouari & Serairi (2009) also study the VCSBPP and raised six heuristics 

solution; in which employed: exact solution, column generation and genetic algorithm 

methods. Their computational study, carried out on a large variety of problem instances, 

provides strong evidence of the efficacy of the set covering heuristic. However, Haouari & 

Serairi (2009) research is limited to one-dimensional problems (1D-BPP), which have 

lower complexity than the problem approached in this investigation. Similarly, Fleszar & 

Hindi (2002) discussed the 1D-BPP, and they present several new heuristics. The most 

effective algorithm turned out to be one based on running one of the former to provide an 

initial solution for the latter, based on the minimal bin slack (MBS) heuristic of Gupta and 

Ho. 

Lodi, et al. (2002) surveyed recent advances obtained for the two-dimensional bin packing 

problem. The review by Lodi, et al. is important for its emphatic analysis on the exact 



solutions, and indicates that one of the major advances in this topic was Martello & Vigo 

(1998). Martello & Vigo pose an exact algorithm that adopts a nested branching scheme, 

and permits the exact solution of the problems involving up to 120 pieces. 

The proposed model in this study considers a VCSBPP since containers, represented as 

utilized trucks to serve clients, constitute a heterogeneous fleet. There are different types of 

trucks with different capacities and fleet costs and each must accommodate different 

ordered products. However, the number of containers is constant and it is known in 

advance, which is obtained as a result from the CSP model in the first phase. Thus, the 

assignment is sought to minimize delivery costs. 

3. PROBLEM DESCRIPTION AND MODELING APPROACH 

3.1 Problem Description  

The problem to solve is to optimize logistic processes of deliveries scheduling and product 

accommodation during loading. In the case of products with “low density values” (low cost 

per unit weight) and high heterogeneous volume and weight, and with traveling large 

distances to different zones, in which transportation costs constitute a high proportion of 

total logistic costs. 

The modeling approach for loading and dispatching of vehicles comprises three sequential 

components. A preprocessing process for clusterization of clients to be served is performed 

in the initial phase. Next, in a first optimization stage, a model is applied to identify the 

type and minimum number of required vehicles to satisfy a given demand. Finally, in the 

last phase, a second optimization model is employed to load these vehicles while 

minimizing the associated transportation costs. 

3.2 Preprocessing: Client Clusterization 

A clusterization procedure is developed prior to the implementation of the proposed 

optimization models, which analyzes each client as a destination node forming a node 

network by associating groups according to their geographic proximity. Therefore, 

depending of the desired aggregation level, clients are grouped at the city, metropolitan 

area or region level to define distribution zones. This strategy seeks to consolidate the load 

and find an improved solution to the truck loading problem in the following models. 

3.3 Optimization Phase 1. Loading Pattern Selection Problem (LPSP) 

The first model is of the cutting stock type, and performs the selection of the type and 

quantity of required patterns to dispatch, in order to satisfy multiproduct and multizone 

demand, while minimizing transportation costs, and heterogeneous fleet size (number of 

vehicles). A feasible configuration of loading and filling of a certain type of truck is defined 



a pattern that indicates the loading quantity for each family of products. A pattern involves 

the type of vehicle loaded with a set of products. The patterns may consist of a single 

family or several families of different products. The latter are obtained from the vast 

documented experience of the company on dispatched product accommodation, or from 

adaptations or combinations of existing patterns. 

A set of patterns p=1,2,…,P; a set of family of products f=1, 2,…,F; a set of zones 

z=1,2,…,Z; and the shipping costs (Cpz) from the warehouse to zone z of pattern p are 

defined. The integer decision variable Xpz represents the amount of loaded vehicles 

according to pattern p sent to zone z while rfp is the amount of product f in pattern p. 

Finally, dfz is the demand of product f in zone z. 

The optimization problem is described as follows: 
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The objective function optimizes the fixed costs associated to the vehicles sent to the 

distribution zones for all possible patterns. The set of restrictions (2) warrants that the 

demand is satisfied for each family of products and for each defined zone in the 

clusterization process. Finally, Restrictions (3) limit the decision variable to the set of non-

negative integers since it deals with number of vehicles. The vehicle capacity restriction is 

unnecessary because patterns are feasible. 

3.4 Optimization Phase 2: Orders Allocation Problem (OAP) 

The second Bin Packing type model is responsible of allocating orders to be served by each 

vehicle-pattern defined by the model in the previous phase, and of minimizing the number 

of visits performed by the set of vehicles Xpz, which is known from the previous model and 

represents the number of selected vehicles for each loading pattern p assigned to serve 

every zone z. The problem in this optimization phase consists of minimizing the total 

number of visits to clients, which determine the transportation cost structure. This problem 

must be solved for one of the zones since it defines the distribution at the client level. 

In this case, the set of vehicles v= 1,2,…,V, of clients c= 1,2,…,C, and of families of 

products f=1,2,…,F are specified. The decision variable Yvc has a value of 1 in the case that 

the client c is served by vehicle v and 0 otherwise, where a client may be served by more 

than one vehicle. In addition, decision variable Xvcf indicates the proportion of the demand 



of client c for the family f that is assigned to vehicle v. Variable tcf has a value of 1 if the 

demand of family f exists on the part of the client c, 0 otherwise. 

In the proposed model, qcf is the demand of the product family f for client c, whereas Qvf is 

the amount of product f that can be loaded on vehicle v, as maximum value (capacity) The 

latter variable is essential in terms of the relationship between the first and second model 

since it is determined from the optimization of the first model, where the employed patterns 

are defined. For each specific selected pattern, the assigned or reserved space is known for 

each family of products.  

One of the assumptions of the second model is the order division is possible, and more than 

one vehicle may be dispatched. In other words, a client may be served through various 

patterns (vehicles). Consequently, a portion of the order of each client that is allocated to 

each vehicle is modeled continuously. 

The optimization problem is presented as follows. 
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The objective function minimizes the number of visits. The set of restrictions (5) avoid that 

variables X are different than zero for clients that are not visited; restrictions (6) guarantees 

the complete fulfillment of client demands, where parameters tcf are defines according to 

equation (10).  

 
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Restrictions (7) does not allow that the allocated capacity to product f of vehicle v is not 

exceeded. Finally, (8) and (9) state domain constraints for the model decision variables. 



4. SAMPLE ILLUSTRATION 

This section presents a small size scenario to illustrate the proposed problem and the 

solution process. The pattern selection model employs the following parameters: 

Zone (Z) is the final destination of the dispatch, where a city or set of cities are served by 

the same vehicle due to their geographic proximity. These zones are defined after the 

clusterization process to group the clients. This example consists of four dispatching zones. 

Family or product category (F) refers to the product classification based solely on the 

logistic management. Therefore, the products with equal or similar loading and dispatching 

management are located in the same family. In this case, four families or product categories 

are considered. 

Loading patterns (P) are configurations of products to load. This is feasible from the 

accommodation point of view without exceeding the maximum capacity of the vehicle. 

Thus, each loading pattern is related to a specific vehicle type. This example has three types 

of vehicles: truck with 2-axle truck with a maximum loading capacity of 10 tons (C2), 3-

axle truck with a maximum loading capacity of 18 tons (C3), and 6-axle truck with a 

maximum loading capacity of 35 tons (C6). This information complies with the allowable 

load for each type of vehicle. In this case, the maximum load is defined as established by 

the Colombian Ministry of Transportation (2009). 

A pattern is defined as a possible pseudo-optimal solution to the problem of filling a truck 

with certain amount of products without exceeding the vehicle capacity. A set of patterns is 

obtained from the company experience on vehicle loading and dispatching. Therefore, the 

search universe of the model solutions is composed by a group of defined patterns. 

Accordingly, it is convenient to generate a number of feasible pseudo-optimal loading 

patterns as large as possible. 

In the example, 40 patterns for each type of vehicle and family of products are presented in 

Table 2. Patterns P1C6 through P12C6 are loading patterns for truck C6 with a maximum 

capacity of 35 tons, which may be referred as multiproduct loadings due to logistic or 

geometric incompatibilities.  

  



 

Table 2 Loading patterns of the example in Tons. 

 

LOADING PATTERN 

TRUCK C6 TRUCK C3 TRUCK C2 
P

1
C

6
 

P
2

C
6
 

P
3

C
6
 

P
4

C
6
 

P
5

C
6
 

P
6

C
6
 

P
7

C
6
 

P
8

C
6
 

P
9

C
6
 

P
1

0
C

6
 

P
1

1
C

6
 

P
1

2
C

6
 

P
1

C
3
 

P
2

C
3
 

P
3

C
3
 

P
4

C
3
 

P
1

C
2
 

P
2

C
2
 

P
3

C
2
 

P
4

C
2
 

F
A

M
IL

Y
 O

F
 

P
R

O
D

U
C

T
S

 F1 35 0 0 0 19 0 13 0 15 0 5 10 18 0 0 0 6 0 0 0 

F2 0 35 0 0 0 19 0 13 10 15 0 5 0 18 0 0 0 6 0 0 

F3 0 0 35 0 0 13 19 0 5 10 15 0 0 0 18 0 0 0 6 0 

F4 0 0 0 35 13 0 0 19 0 5 10 15 0 0 0 18 0 0 0 6 

The variables included in the election pattern model are the following: 

Cpz: Costs associated to the shipping of a loaded truck according to pattern p to zone z. 

Only freight costs were included in this scenario, thus, the cost is given by the freight value 

for the type of vehicle belonging to pattern p from the warehouse to the city (destination). 

Table 3 shows the costs for the example in dollars. 

Table 3 Freight costs (US$) 

 

ZONES 

BOGOTÁ CALI CARTAGENA MEDELLIN 

Z1 Z2 Z3 Z4 

T
Y

P
E

S
 O

F
 

V
E

H
IC

L
E

S
 

TRUCK C6 2222 2694 228 1640 

TRUCK C3 1431 1743 146 1062 

TRUCK C2 1183 1451 117 901 

 

dfz This parameter refers to the total demand of each product per zone to be satisfied with 

the current dispatching schedule. The amount of demands of the example is shown in Table 

4.  

rfp This variable indicates the quantity of family of product f that may be loaded in pattern 

p. In other words, this variable is the capacity of the vehicle allocated to this family if the 

truck is loaded according to pattern p. The values of rfp are presented in Table 2. Finally, 

Xpz is the decision variable of the pattern election model, which indicates the amount of 

loaded truck dispatched to zone z according to pattern p so that the cost is as minimum as 

possible while satisfying the demand. When referring to the number of patterns, this 



variable may only be an integer, and each pattern is related to a single type of vehicle. The 

number of vehicle type to dispatch is determined from the number of vehicles assigned to 

each pattern. 

Table 4 Amount of demands in tons. 

 

ZONES 

BOGOTÁ CALI CARTAGENA MEDELLIN 

Z1 Z2 Z3 Z4 

F
A

M
IL

Y
 O

F
 

P
R

O
D

U
C

T
S

 

F1 85 0 8.9 0 

F2 50 25 10 45 

F3 0 0 0 7.3 

F4 9.2 17 15 5 

Table 5 presents the matrix of Xpz obtained as a result of applying the first model. Note that 

11 vehicles are dispatched to all zones to satisfy the demand, 5 dispatched to Bogotá (Z1), 2 

to Cali (Z2), 2 to Cartagena (Z3), and 2 to Medellin (Z4). From these vehicles, eight are 6-

axle trucks, 2 are 3-axle trucks, and 1 is a 2-axle truck. Once the required patterns are 

known, the type of vehicle is identified since each pattern refers to a single type of vehicle. 

The total dispatching cost is equal to $ US18.381. 

Table 5 Matrix for pattern selection model 

  ZONES 

BOGOTÁ CALI CARTAGENA MEDELLIN 

Z1 Z2 Z3 Z4 

P
A

T
T

E
R

N
S

 

P1C6 2    

P2C6 1   1 

P5C6 1    

P8C6  1   

P10C6    1 

P12C6   1  

P2C3 1 1   

P2C2   1  

The results of Model 1 are the input for Model 2 in the customer allocation. In this case, the 

matrix for pattern selection yields the list of vehicles to be assigned to different orders, as 

shown in Table 6. 

Table 6: List of vehicles to be dispatched as a result of the pattern selection model 



VEHICLE PATTERN 
DESTINATION 

ZONE 

V1 P1C6 Z1 

V2 P1C6 Z1 

V3 P2C6 Z1 

V4 P5C6 Z1 

V5 P2C3 Z1 

V6 P8C6 Z2 

V7 P2C3 Z2 

V8 P12C6 Z3 

V9 P2C2 Z3 

V10 P2C6 Z4 

V11 P10C6 Z4 

 

In addition to the results of the previous model, the selection model requires other input 

data such as demand only at the zone level, but discretized by client (See Table 7). 

Naturally, the demand must be the same employed in the selection model. The total demand 

per zone must be remain the same for all models. The demand for Family 1 (F1) towards 

Bogotá (Z1) has a total of 85 tons, which is equal to the sum of the demand of this family 

for each of the four clients in Bogotá. 

Table 7 Discretized demand per client 

ZONE CLIENT 
DEMAND 

F1 F2 F3 F4 

Z1 C1 20 50 
  

Z1 C2 50 
   

Z1 C3 
   

9.2 

Z1 C4 15 
   

Z2 C5 
 

10 
  

Z2 C6 
 

5 
 

17 

Z2 C7 
 

10 
  

Z3 C8 8.9 
   

Z3 C9 
 

10 
 

15 

Z4 C10 
 

35 
  

Z4 C11 
 

10 
 

5 

Z4 C12 
  

7.3 
 

The allocation model assumes that the transportation cost takes into account only freight 

when serving a single client. If the truck must perform many visits, then an additional cost 

is applied that depends on the number of clients to visit. The model reduces the number of 



visits and minimizes the variable cost of each visited client since this additional cost varies 

with each case. Two matrices are presented as a result of the client allocation model. The 

first matrix indicates the number of visits or points that each dispatching vehicle must serve 

defined by the clients to be served. This second model seeks to minimize this variable. The 

total cost of dispatching operations is known through this matrix along with the MEP 

results, which is the global objective function of the proposed models. 

Table 8 Number of clients served per truck as a result of the client allocation model 

 VEHICLES 

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 

Z
O

N
E

S
A

 Z1 2 1 1 2 1       

Z2      2 2     

Z3        2 1   

Z4          1 2 

 

OAP minimizes the summation of the values shown in Table 8. In other words, the 

generated costs by the dispatched products must be minimized. The second matrix of the 

OAP is the allocation (See Table 9), in which the quantity of each order is served for each 

dispatching vehicle (in the case that an order is served by more than one vehicle). 

The loading schedule and vehicle dispatching is determined with the information from the 

allocation matrix since the pattern assigned to each vehicle is known by indicating the 

loading mechanism and configuration of the truck and the orders that are served by each 

vehicle. Note that vehicle 8 is a truck C6 with the city of Cartagena as the final destination, 

as shown in Table 6. This truck must be loaded with 8.9 tons from Family 1 for client 8, 5 

tons from Family 2, and 10 from Family 4 for client 9. In addition, vehicle 8 must visit two 

clients in Medellin. The number of vehicles that will serve the same client is also 

determined. For example, vehicles 2 and 4 (truck C6) will serve client 2 located in Bogotá. 

 

Table 9 Orders assigned to each vehicle in tons 

ZONE CLIENT FAMILY 
VEHICLE 

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 

Z1 C1 F1 20           

Z1 C1 F2   35  15       

Z1 C2 F1  35  15        

Z1 C3 F4    9.2        

Z1 C4 F1 15           

Z2 C5 F2      8 2     

Z2 C6 F2      5      



ZONE CLIENT FAMILY 
VEHICLE 

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 

Z2 C6 F4      17      

Z2 C7 F2       10     

Z3 C8 F1        8.9    

Z3 C9 F2        5 5   

Z3 C9 F4        15    

Z4 C10 F2          35  

Z4 C11 F2           10 

Z4 C11 F4           5 

Z4 C12 F3           7.3 

 

5. A REAL-WORLD CASE APPLICATION 

The models were evaluated with a real-world case with a larger size and complexity than in 

the example previously presented. The models were applied to a laminated steel company 

in Colombia, which provides a range of products that are classified in 115 families of 

products based on two criteria. The first criterion corresponds to the logistic management, 

where products are compatible with each other in the loading and seven logistic categories 

are established. The second criteria refer to the dimensions of the product (length and 

width). All products with the same logistic management and same dimensions are part of 

the same family of products since they use the same space as they are stacked on the base 

of the truck. 

The company dispatches throughout the country and establishes 120 zones, as illustrated in 

Figure 3. The served zones, depicted in blue color, group close municipalities and are 

served by one vehicle. 



 

Figure 3 Dispatching zone for the Steel Company in Colombian. ACESCO S.A. 

 

The company utilizes four types of vehicles with different capacities and dimensions. 

Given the experience of the company, a data base of approximately 4,500 patterns (with the 

four types of vehicles) was consolidated as a result of the dispatching information analysis 

from the recent years. Regarding the orders, the weekly demand with a list of 

approximately 1,100 orders from 150 clients was consolidated.  

From the aforementioned information, the pattern selection models (LPSP) and order 

allocation (OAP) model were evaluated for different scenarios using the same pattern and 

order data base. 

The sensitivity of the model was assessed for these scenarios as certain variables vary. The 

LPSP was estimated with variations in the number of patterns, zones, and families. The 

number of patterns and zones were varied for the OAP. 

An experimental design was performed for the LPSP that consists of three levels for each 

variable with approximately 30%, 60%, and 100% of the original problem size. A total of 

27 scenarios were evaluated as a combination of the three levels of each variable, as 

presented in Table 10. 



Table 10 Scenarios for the LPSP. 
S

C
E

N
A

R
IO

 

N° 

ZONES 

N° 

PATTERNS 

N° 

FAMILIES 

S
C

N
E

A
E

R
IO

 

N° 

ZONES 

N° 

PATTERNS 

N° 

FAMILIES 

1 120 4500 110 15 80 3000 40 

2 120 4500 70 16 80 2000 110 

3 120 4500 40 17 80 2000 70 

4 120 3000 110 18 80 2000 40 

5 120 3000 70 19 40 4500 110 

6 120 3000 40 20 40 4500 70 

7 120 2000 110 21 40 4500 40 

8 120 2000 70 22 40 3000 110 

9 120 2000 40 23 40 3000 70 

10 80 4500 110 24 40 3000 40 

11 80 4500 70 25 40 2000 110 

12 80 4500 40 26 40 2000 70 

13 80 3000 110 27 40 2000 40 

14 80 3000 70  

 

It is important to highlight that a random elimination in the case of patterns and families 

was performed to reduce the number of variables from the scenarios, verifying that patterns 

with family of products were present in the respective scenario. With respect to the zones, 

no elimination took place and these were grouped according to geographic proximity until 

the number of zones was reduced to the indicated scenario. This indicates that demand of 

the problem was reduced for the scenarios with lower number of families. The demand 

remained constant for scenarios with a lower number of zones. 

Six zones were initially evaluated for the OAP, and then these zones were reduced to two 

due to geographic proximity. Table 11 shows 16 scenarios that were estimated with 66% 

and 100% of the number of patterns. Note that the Metropolitan Area of Medellin includes 

the municipalities of Medellin, Bello, Envigado and Itagui, and the Metropolitan Area of 

Cali includes the municipalities of Cali and Yumbo. 

 

Table 11 Scenarios for the OAP 

SCENARIO ZONE 
NUMBER OF 

PATTERNS 
NUMBER OF 

ZONES 

1 METROPOLITAN AREA OF MEDELLIN 66% 66% 



SCENARIO ZONE 
NUMBER OF 

PATTERNS 
NUMBER OF 

ZONES 

2 METROPOLITAN AREA OF MEDELLIN 100% 66% 

3 METROPOLITAN AREA OF CALI 66% 66% 

4 METROPOLITAN AREA OF CALI 100% 66% 

5 MEDELLIN 66% 100% 

6 MEDELLIN 100% 100% 

7 BELLO (close to Medellín) 66% 100% 

8 BELLO (close to Medellín) 100% 100% 

9 ENVIGADO (close to Medellín) 66% 100% 

10 ENVIGADO (close to Medellín) 100% 100% 

11 ITAGUI (close to Medellín) 66% 100% 

12 ITAGUI (close to Medellín) 100% 100% 

13 CALI 66% 100% 

14 CALI 100% 100% 

15 YUMBO (close to Cali) 66% 100% 

16 YUMBO  (close to Cali) 100% 100% 

 

Two parameters were employed to evaluate optimization models. The first indicates the 

dispatching costs for the LPSP and the total number of visits or deliveries to clients in each 

zone for the OAP. The second is an assessment parameter that indicates the time of 

execution of the model. A computer with a I7-3540M processor with 3 GHz, and RAM 

memory of 8 GB was employed in this evaluation. The problems were considered as Mixed 

Integer Programming (MIP) since the decision variable is the number of trucks in the first 

model, and the number of visit to clients in the second model. With respect to the 

optimization, the program is solved using the Linear Programming LP Relaxation. The 

CPLEX solver is part of the GAMS program and employs the Branch and Cut algorithm. 

This algorithm is a combination of cutting plane method and branch-and-bound algorithm, 

which solve the sequence of LP relaxation. The cutting plane method improves the 

relaxation of the problem to approximate to a MIP. The branch-and-bound algorithm 

performs with a sophisticated approach of dividing and conquering when solving the 

optimization problem (Mitchell, 2002). 

The list with the conditions and results of the 27 evaluated scenarios with the first model, as 

shown in Table 12. This table presents the costs and execution times. Figures 4 and 5 

illustrate graphs with the results.  



Table 12 Results of the sensitivity analysis for the Loading Pattern Selection Problem 

(LPST). 

S
C

E
N

A
R

IO
 

ZONES PATTERNS FAMILIES 
TOTAL COST 

($COP) 

TOTAL COST 

(1,000 $USD) 

TIME 

(SEC) 

1 120 4500 110 $ 823,718,000 $ 427.46 172 

2 120 4500 70 $ 656,860,000 $ 340.87 42 

3 120 4500 40 $ 433,684,000 $ 225.06 33 

4 120 3000 110 $ 850,728,000 $ 441.48 97 

5 120 3000 70 $ 674,930,000 $ 350.25 27 

6 120 3000 40 $ 435,318,000 $ 225.90 30 

7 120 2000 110 $ 879,334,000 $ 456.32 41 

8 120 2000 70 $ 693,432,000 $ 359.85 21 

9 120 2000 40 $ 449,200,000 $ 233.11 18 

10 80 4500 110 $ 814,320,000 $ 422.58 955 

11 80 4500 70 $ 643,070,000 $ 333.72 46 

12 80 4500 40 $ 418,704,000 $ 217.28 33 

13 80 3000 110 $ 837,896,000 $ 434.82 75 

14 80 3000 70 $ 660,596,000 $ 342.81 36 

15 80 3000 40 $ 421,660,000 $ 218.82 27 

16 80 2000 110 $ 866,256,000 $ 449.54 106 

17 80 2000 70 $ 686,986,000 $ 356.51 30 

18 80 2000 40 $ 431,074,000 $ 223.70 23 

19 40 4500 110 $ 776,972,000 $ 403.20 954 

20 40 4500 70 $ 617,674,000 $ 320.54 33 

21 40 4500 40 $ 393,306,000 $ 204.10 18 

22 40 3000 110 $ 809,846,000 $ 420.26 317 

23 40 3000 70 $ 634,412,000 $ 329.22 22 

24 40 3000 40 $ 406,572,000 $ 210.99 15 

25 40 2000 110 $ 830,888,000 $ 431.18 70 

26 40 2000 70 $ 655,474,000 $ 340.15 18 

27 40 2000 40 $414,716,000 $ 215.21 17 

 

The dispatching cost includes the transportation cost paid by the carrier for each transported 

vehicle, i.e., a reduction in the number of vehicles is equivalent to a reduction in the cost 

required for serving the given demand. Figure 4 suggests that a better loading solution is 

obtained with a larger number of patterns in the database. Whereas, with respect to zoning, 

an improved solution was obtained with a small number of zones since destinations are 



more aggregated. However, it is important to highlight that any VRP formulation, in this 

case the OAP, for each zone is more complex as the number of zones is reduced, and then 

the solution to the second problem is more difficult to obtain. Finally, this routing cost may 

represent a relevant cost within the total dispatching cost; therefore, it must be balanced by 

setting the number of zones, so that the model assumptions are maintained; where routing is 

a secondary problem, with a smaller share of total costs. 

With respect to the variation in the number of categories or families of products, inferior 

costs are inferred as less families are included in the problem, i.e., more alternatives to the 

solution of feasible loading as the characterization of the products are less disaggregated 

yielding an improved result in the model. However, this is subject to the fulfillment of the 

compatibility requirements. If at least two categories of products no coincide with loading 

compatibilities, then they may not be aggregated to a single category. A minimum number 

of families are advisable to satisfy the compatibility requirements. 

As a general conclusion, the model results are improved as the number of patterns 

increases. It is also advisable to aggregate the demand per families or zones, as long as the 

model assumptions and product compatibility are maintained. 
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Figure 4 Results of the sensitivity analysis for the costs of the LPSP in 1,000 US$. a) 

33% of the families. b) 66% of the families. c) 100% of the families. 

In the second parameter, the execution time is increased as the problem size is incremented 

since a larger number of variables are considered such as for the number of families and 

patterns. The execution time for the number of zones depends on the alternatives and the 

quality of the feasible solutions. When the number of zones is higher, the level of 

disaggregation does not allow many solution alternatives, thus, the model converges in less 

time. On the contrary, when the number of zones is more aggregated, there is a large 

amount of possible solutions, whose evaluation delays the execution process in the optimal 

search. Notice that the problem may present a larger delay with an inferior number of 

variables than in a larger size problem, as depicted in Figure 5. 

 

 

Figure 5 Result of the sensitivity analysis for the execution time of the LPSP. a) 33% of 

the families. b) 66% of the families. c) 100% of the families. 

In the OAP model, the scenarios shown in Table 11 are evaluated, and their results are 

presented in Table 13. This table suggests that Model 1 yields improved results with a 

larger zone aggregation, requiring an inferior number of vehicles to serve the demand 
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(aggregated case). Not as good solutions are obtained with a larger disaggregation of the 

zones since fewer loading consolidation possibilities are encountered. 

Table 13 Result of the sensitivity analysis for the Orders Allocation Problem (OAP). 

ZONA PATTERNS 
TOTAL 
VISITS 

TOTAL 
VEHICLES 

AVERAGE 
VISITAS PER 

VEHICLE 

METROPOLITAN 
AREA OF 

MEDELLIN 

AGGREGATED 
66% 107 45 2.38 

100% 110 49 2.24 

DISAGGREGATED 
PER 

MUNICIPALITY 

66% 96 48 2.00 

100% 103 54 1.91 

METROPOLITAN 
AREA OF CALI 

AGGREGATED 
66% 64 20 3.20 

100% 62 20 3.10 

DISAGGREGATED 
PER 

MUNICIPALITY 

66% 65 28 2.32 

100% 69 30 2.30 

 

No clear tendency in the behavior was obtained for the number of visits or services to 

clients from the second model. In the Medellin scenario, the total number of visits was 

reduced as the municipalities were disaggregated. The converse was observed in the Cali 

case. The average number of visits per truck was reduced as the zones were aggregated 

because a greater utilization of the vehicle capacity through a higher loading consolidation 

is obtained. This requires a higher combination of orders from different clients in the same 

vehicle yielding more visits. 

The execution time of the OAP was similar to the different analyzed scenarios varying 

between 48 and 70 seconds. Thus, the aggregated situation is preferred in terms of time. 

The delivery to different aggregated municipalities are optimized in a single scenario, while 

for the same process, the total time is the sum of each of the separate municipalities. 

 

6. CONCLUSIONS 

The proposed model of this study solves a complex logistic problem in a practical manner, 

consisting on loading heterogeneous products with compatibility problems and 

heterogeneous dispatching vehicles in two optimization phases. In the first phase, the 

Loading Pattern Selection Problem (LPSP) maximizes the utilization of vehicles as the 

freight cost is minimized and demand is satisfied. In the second phase, the Orders 

Allocation Problem (OAP) minimizes the number of allocated clients to each vehicle while 

achieving a fewer number of visits or stops in the route. The mixed integer linear 



programming models for each optimization phase provide exact solutions in a reasonable 

amount of time. The proposed approach is useful in the case of shipping products of low 

density value (low price per ton) between cities, where a maximum utilization of the truck 

capacity is achieved, particularly considering that the freight is negotiated per shipped truck 

than per ton. 

The proposed methodology takes advantage of the company experiences represented by a 

database for conforming patterns, which constitutes the search space of solutions for the 

LPSP, and thus, avoiding another problem for this type of scenario such as the 

compatibility between products during loading. Given that only verified pattern database is 

employed, the incompatibility problem is avoided since the loading possibilities of true 

vehicles with feasible accommodations. 

The approach limitation includes the MEP dependency of the available pattern database 

(search space of solutions). Hence, the size and quality of the set of patterns presents a high 

incidence in the quality of the results. Another aspect to consider is the implication of the 

order consolidation in the quality of the results for both the LPSP and the OAP since 

improved loading and routing solutions are obtained as the demand is consolidated (i.e., 

more orders are accumulated when scheduling dispatches), and a larger reduction in the 

costs. 

The proposed models were analyzed for different scenarios using a Colombian steel 

company. The evaluation was based on two parameters: model solution and execution time 

of the model. For the LPSP, the solution is the total number of vehicle type required for 

transporting a given demand. If this number is multiplied by the freight of each vehicle, 

then the transportation cost of merchandise from the distribution center to the clients. The 

solution for the AOP is the number of visits given by the number of clients assigned to a 

vehicle. 

From the results the first model, it is concluded that as the pattern database is increased and 

zones are aggregated, the solution is improved. However, if zones are reduced, then the 

routing error is more important since the model assigns distant customers to a same vehicle 

although a better load consolidation and utilization of vehicle capacity is reached. This 

yields an inferior number of required vehicles for transporting the same demand of 

products. 

The solution for the LPSP model is improved by reducing the number of vehicles, however 

the AOP model is forced to assign more clients to a same vehicle, and thus, increase the 

number of visits. An improvement in the solutions of the first model entails worsening the 

solution of the second model. 

The proposed approach prioritizes the utilization of the dispatching trucks in a nationwide 

transportation context, also known as long haul trucking. The urban routing process is less 



important in the case analyzed. This is reasonable since it deals with few clients per 

vehicle, representing simple routing problems to be addressed. Additionally, the proposed 

approach becomes relevant in the case of highly heterogeneous and incompatible products, 

justifying the focus of the problem on optimizing long haul trucking transportation cost 

process.  

Future research can includes routing restrictions such as the maximum number of visits per 

clients, or a given client is not served by more than a certain number of vehicles. In order to 

ensure feasible solutions, it is possible to include slack to the vehicle capacity for different 

patterns. 

Finally, another future research may be the use of dynamic and variable zones, which 

depend on the orders to ship. Further research includes advancing in the utilization of 

solution methods and heuristics to reduce runtime in the problem resolution. 
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