Mostrar el registro sencillo del ítem

dc.contributor.advisorPaternina Arboleda, Carlos Daniel
dc.contributor.advisorBarrios Sarmiento, Agustín
dc.contributor.authorMachado Domínguez, Luis Fernando
dc.date.accessioned2022-02-11T21:44:57Z
dc.date.available2022-02-11T21:44:57Z
dc.date.issued2021
dc.identifier.urihttp://hdl.handle.net/10584/10009
dc.description.abstractEsta tesis se centra en diseñar y desarrollar una metodología para abordar el MRCPSP con diversas funciones objetivo y diferentes tipos de interrupciones. En esta tesis se exploran el MRCPSP con dos funciones objetivo, a saber: (1) minimizar la duración del proyecto y (2) maximizar el valor presente neto del proyecto. Luego, se tiene en cuenta dos tipos diferentes de interrupciones, (a) interrupción de duración, e (b) interrupción de recurso renovable. Para resolver el MRCPSP, en esta tesis se proponen tres estrategias metaheurísticas: (1) algoritmo memético para minimizar la duración del proyecto, (2) algoritmo adaptativo de forrajeo bacteriano para maximizar el valor presente neto del proyecto y (3) algoritmo de optimización multiobjetivo de forrajeo bacteriano (MBFO) para resolver el MRCPSP con eventos de interrupción. Para juzgar el rendimiento del algoritmo memético y de forrajeo bacteriano propuestos, se ha llevado a cabo un extenso análisis basado en diseño factorial y diseño Taguchi para controlar y optimizar los parámetros del algoritmo. Además se han puesto a prueba resolviendo las instancias de los conjuntos más importantes en la literatura: PSPLIB (10,12,14,16,18,20 y 30 actividades) y MMLIB (50 y 100 actividades). También se ha demostrado la superioridad de los algoritmos metaheurísticos propuestos sobre otros enfoques heurísticos y metaheurísticos del estado del arte. A partir de los estudios experimentales se ha ajustado la MBFO, utilizando un caso de estudio.
dc.formatapplication/pdfes_ES
dc.format.extent147 páginases_ES
dc.language.isoenges_ES
dc.publisherUniversidad del Nortees_ES
dc.titleReactive scheduling to treat disruptive events in the MRCPSPes_ES
dc.typeTrabajo de grado - Doctoradoes_ES
dc.publisher.programDoctorado en Ingeniería Industriales_ES
dc.publisher.departmentDepartamento de ingeniería industriales_ES
dc.description.degreelevelDoctoradoes_ES
dc.publisher.placeBarranquilla, Colombiaes_ES
dc.rights.creativecommonshttps://creativecommons.org/licenses/by/4.0/es_ES
dc.type.coarhttp://purl.org/coar/resource_type/c_db06es_ES
dc.type.driverinfo:eu-repo/semantics/doctoralThesises_ES
dc.type.contentTextes_ES
dc.type.versioninfo:eu-repo/semantics/updatedVersiones_ES
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaes_ES
dc.description.degreenameDoctor en Ingeniería Industriales_ES
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2es_ES
dcterms.audience.educationalcontextEstudianteses_ES
dc.subject.lembMatemáticas aplicadas
dc.subject.lembAlgoritmos
dc.subject.lembOptimización matemática
dcterms.audience.professionaldevelopmentDoctoradoes_ES
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesses_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem