Mostrar el registro sencillo del ítem

dc.contributor.advisorPardo González, Mauricio
dc.contributor.authorManjarrés Córdoba, José Elías
dc.date.accessioned2022-03-03T20:14:35Z
dc.date.available2022-03-03T20:14:35Z
dc.date.issued2020
dc.identifier.urihttp://hdl.handle.net/10584/10098
dc.description.abstractWearable technology is changing society by becoming an essential component of daily life. Human activity recognition (HAR) is one of the most prominent research areas where wearable devices play a key role. The first major contribution to the field in this dissertation is a smart physical work- load tracking system that combines wearable-based HAR and heart rate tracking. The proposed system employs a concept from ergonomics, the Frimat’s method, to compute the physical workload from heart rate measurements within a specified time window. This dissertation includes a case of study where tracking of an individual over the course of 20 days corroborates the ability of the system to assess adaptation to an exercise routine. The second and third contributions of this dissertation point to KEH in wearable environments. The second contribution is an energy logger for wrist-worn systems, with the purpose of tracking energy generation in KEH systems during daily activities. Thus, it is possible to determine if the harvested energy is enough to power a conventional wearable device. The proposed system computes the harvested energy using the characteristics of the objective load, which in this case is a battery charger. I carried out experiments with multiple subjects to examine the generation capabilities of a commercial harvester under the conditions of human motion. This study provides insights of the performance and limitations of kinetic harvesters as battery chargers. The third contribution is a KEH-based HAR system using deep learning, data augmentation and transfer learning to outperform existing classification approaches in the KEH domain. The proposed architecture comprises convolutional neural networks (CNN) and long short-term memory networks (LSTM), which has been demonstrated to outperform other architectures found in the literature. Since deep learning classifiers require large amounts of data, and KEH datasets are limited in size, this thesis also includes the proposal of three data augmentation methods to synthesize KEH signals simulating new users. Finally, transfer learning is employed to build a system that maintains performance independent of device location or the subject wearing the device.
dc.formatapplication/pdfes_ES
dc.format.extentix, 104 páginases_ES
dc.language.isoenges_ES
dc.publisherUniversidad del Nortees_ES
dc.titleWearable-based human activity recognition: from a healthcare application to a kinetic energy harvesting approaches_ES
dc.typeTrabajo de grado - Doctoradoes_ES
dc.publisher.programDoctorado en Ingeniería Eléctrica y Electrónicaes_ES
dc.publisher.departmentDepartamento de eléctrica y electrónicaes_ES
dc.description.degreelevelDoctoradoes_ES
dc.publisher.placeBarranquilla, Colombiaes_ES
dc.rights.creativecommonshttps://creativecommons.org/licenses/by/4.0/es_ES
dc.type.coarhttp://purl.org/coar/resource_type/c_db06es_ES
dc.type.driverinfo:eu-repo/semantics/doctoralThesises_ES
dc.type.contentTextes_ES
dc.type.versioninfo:eu-repo/semantics/updatedVersiones_ES
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaes_ES
dc.description.degreenameDoctor en Ingeniería Eléctrica y Electrónicaes_ES
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2es_ES
dcterms.audience.educationalcontextEstudianteses_ES
dc.subject.lembSistemas de comunicación inalámbrica
dc.subject.lembMecánica humana -- Simulación por computadores
dc.subject.lembCircuitos integrados
dc.subject.lembComputadores de bolsillo
dc.subject.lembSistemas analógicos electrónicos
dcterms.audience.professionaldevelopmentDoctoradoes_ES
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesses_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem