• Login
    Ver ítem 
    •   DSpace Principal
    • División Ciencias Básicas
    • Tesis Doctorado en Ciencias Naturales
    • Ver ítem
    •   DSpace Principal
    • División Ciencias Básicas
    • Tesis Doctorado en Ciencias Naturales
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Well-balanced and entropy stable numerical schemes for some models described by balance laws

    • Exportar citas
      • Exportar a Refworks
      • Exportar a Ris
      • Exportar a Endnote
      • Exportar a Mendeley
    URI
    http://hdl.handle.net/10584/13275
    Registro completo
    Mostrar el registro completo del ítem
    Autor
    Valbuena Duarte, Sonia
    Fecha
    2023
    Resumen
    This thesis contains two parts dedicated to advancing numerical methods for some models described by balance laws. In the first part, we designed a high-order entropy-stable numerical scheme for the Keyfitz-Kranzer model following theory of Tadmor [E. Tadmor, The numerical viscosity of entropy stable schemes for systems of conservation laws, Math. Comput., 49(1987) pp.91–103], and Fjordholm et al. [U.S. Fjordholm, S. Mishra, and E. Tadmor, Arbitrarily high-order essentially non-oscillatory entropy stable schemes for systems of conservation laws. SIAM Journal on Numerical Analysis, 50(2012) pp.544–573], we constructed an explicit entropy pair and a non-oscillatory reconstruction of a fourth-order numerical flux. The procedure satisfies the sign property, ensuring the proposed scheme is entropy stable. In the second part, we designed numerical methods for the blood flow model in arteries. A characteristic of hyperbolic systems of balance laws is the existence of non-trivial equilibrium solutions, where the effects of convective flows and source terms cancel; such solutions may have physical significance. Generally, a standard numerical method may not satisfy the equilibrium's discrete version at steady state. To avoid this, we constructed an entropy pair and designed a well-balanced and entropy-stable numerical scheme. In our approach, we adopted theory of Tadmor and Fjordholm et al. In addition, we designed a well-balanced discontinuous Galerkin scheme following theory of Mantri and Noelle [Y. Mantri and S. Noelle, Well-balanced discontinuous Galerkin scheme for 2×2 hyperbolic balance law. Computational Physics, 429(2021) pp.1–13]. The robust numerical scheme constructed can preserve the blood flow model's equilibrium states.
    Colecciones a las que pertenece
    • Tesis Doctorado en Ciencias Naturales [15]
    Resumen Tesis Doctorado.pdf (203.3Kb)Visualizar
    -

    DSpace software copyright © 2002-2016  DuraSpace
    Contacto | Sugerencias
    Theme by 
    Atmire NV
     

     

    Listar

    Todo DSpaceComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasEsta colecciónPor fecha de publicaciónAutoresTítulosMaterias

    Mi cuenta

    AccederRegistro

    DSpace software copyright © 2002-2016  DuraSpace
    Contacto | Sugerencias
    Theme by 
    Atmire NV