• Login
    Ver ítem 
    •   DSpace Principal
    • División Ingenierías
    • Departamento de Ingeniería de Sistemas
    • Tesis Doctorado en Ingeniería de Sistemas y Computación
    • Ver ítem
    •   DSpace Principal
    • División Ingenierías
    • Departamento de Ingeniería de Sistemas
    • Tesis Doctorado en Ingeniería de Sistemas y Computación
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Design and implementation of data assimilation methods based on Cholesky decomposition

    • Exportar citas
      • Exportar a Refworks
      • Exportar a Ris
      • Exportar a Endnote
      • Exportar a Mendeley
    URI
    http://hdl.handle.net/10584/10186
    Registro completo
    Mostrar el registro completo del ítem
    Autor
    Mancilla Herrera, Alfonso Manuel
    Fecha
    2020
    Resumen
    In Data Assimilation, analyses of a system are obtained by combining a previous numerical model of the system and observations or measurements from it. These numerical models are typically expressed as a set of ordinary differential equations and/or a set of partial differential equations wherein all knowledge about dynamics and physics of, for instance, the ocean and or the atmosphere are encapsulated. We treat numerical forecasts and observations as random variables and therefore, error dynamics can be estimated by using Bayes’ rule. For the estimation of hyper-parameters in error distributions, an ensemble of model realizations is employed. In practice, model resolutions are several order of magnitudes larger than ensemble sizes, and consequently, sampling errors impact the quality of analysis corrections and besides, models can be highly non-linear and well-common Gaussian assumptions on prior errors can be broken. To overcome these situations, we replace prior errors by a mixture of Gaussians and even more, precision covariance matrices intra-clusters are estimated by means of the modified Cholesky decomposition. Four different methods are proposed, namely the Posterior EnKF with its deterministic and stochastic variations, a Non-Gaussian method and a MCMC filter, which used the Bickel-Levina estimator; these methods are based on a modified Cholesky decomposition and tested with the Lorenz 96 model. Their implementations are shown to provide equivalent solutions compared to another EnKF methods like the LETKF and the EnSRF.
    Colecciones a las que pertenece
    • Tesis Doctorado en Ingeniería de Sistemas y Computación [11]
    8709908.pdf (19.73Mb)Visualizar
    -

    DSpace software copyright © 2002-2016  DuraSpace
    Contacto | Sugerencias
    Theme by 
    Atmire NV
     

     

    Listar

    Todo DSpaceComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasEsta colecciónPor fecha de publicaciónAutoresTítulosMaterias

    Mi cuenta

    AccederRegistro

    DSpace software copyright © 2002-2016  DuraSpace
    Contacto | Sugerencias
    Theme by 
    Atmire NV