Mostrar el registro sencillo del ítem

dc.contributor.advisorPercybrooks Bolívar, Winston Spencer
dc.contributor.authorJiménez Medina, Mauro Alejandro
dc.date.accessioned2023-02-08T21:18:07Z
dc.date.available2023-02-08T21:18:07Z
dc.date.issued2022
dc.identifier.urihttp://hdl.handle.net/10584/11352
dc.description.abstractLa formalización de las interpretaciones expresivas aún se considera relevante debido a la complejidad de la música. La interpretación expresiva forma un aspecto importante de la música, teniendo en cuenta diferentes convenciones como géneros o estilos que una interpretación puede desarrollar con el tiempo. Modelar la relación entre las expresiones musicales y los aspectos estructurales de la información acústica requiere una base probabilística y estadística mínima para la robustez, validación y reproducibilidad de aplicaciones computacionales. Por lo tanto, es necesaria una relación cohesiva y una justificación sobre los resultados. Esta tesis se sustenta en la teoría y aplicaciones de modelos discriminativos y generativos en el marco del aprendizaje de maquina y la relación de procedimientos sistemáticos con los conceptos de la musicología utilizando técnicas de procesamiento de señales y minería de datos. Los resultados se validaron mediante pruebas estadísticas y una experimentación no paramétrica con la implementación de un conjunto de métricas para medir aspectos acústicos y temporales de archivos de audio para entrenar un modelo discriminativo y mejorar el proceso de síntesis de un modelo neuronal profundo. Adicionalmente, el modelo implementado presenta la oportunidad para la aplicación de procedimientos sistemáticos, automatización de transcripciones usando notación musical, entrenamiento de habilidades auditivas para estudiantes de música y mejorar la implementación de redes neuronales profundas usando CPU en lugar de GPU debido a las ventajas de las redes convolucionales para el procesamiento de archivos de audio como vectores o matriz con una secuencia de notas.
dc.formatapplication/pdfes_ES
dc.format.extent76 páginases_ES
dc.language.isoenges_ES
dc.publisherUniversidad del Nortees_ES
dc.titleIdentification of expressive descriptors for style extraction in music analysis using linear and nonlinear modelsen_US
dc.typeTrabajo de grado - Maestríaes_ES
dc.publisher.programMaestría en Ingeniería Electrónicaes_ES
dc.publisher.departmentDepartamento de eléctrica y electrónicaes_ES
dc.description.degreelevelMaestríaes_ES
dc.publisher.placeBarranquilla, Colombiaes_ES
dc.rights.creativecommonshttps://creativecommons.org/licenses/by/4.0/es_ES
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcces_ES
dc.type.driverinfo:eu-repo/semantics/masterThesises_ES
dc.type.contentTextes_ES
dc.type.versioninfo:eu-repo/semantics/submittedVersiones_ES
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaes_ES
dc.description.degreenameMagister en Ingeniería Electrónicaes_ES
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2es_ES
dcterms.audience.educationalcontextEstudianteses_ES
dc.subject.lembAnálisis musical
dc.subject.lembProcesamiento de señales
dc.subject.lembMinería de datos
dc.subject.lembIngeniería electrónica
dcterms.audience.professionaldevelopmentMaestríaes_ES
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesses_ES


Ficheros en el ítem

No Thumbnail [100%x80]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem