Mostrar el registro sencillo del ítem

dc.contributor.advisorSantander Mercado, Alcides Ricardo
dc.contributor.advisorGarcía Llinás, Guisselle Adriana
dc.contributor.authorAngarita Baena, Carlos Andrés
dc.date.accessioned2025-02-07T16:16:07Z
dc.date.available2025-02-07T16:16:07Z
dc.date.issued2024
dc.identifier.urihttp://hdl.handle.net/10584/13112
dc.description.abstractThe company's operational research allows the identification of improvement opportunities, process critical stages of the process and relevant information that allows a better understanding of the whole process. When analyzing the supply chain, it is possible to find different approaches that create an upturn in the synchronization between the participants, achieving better response times with a superior capacity to face the fluctuations in the demand. The complexity of the supply chains increases when there is a high variability at some level, which is why the economic and geopolitical aspects must be taken into account when planning the internal processes. This presents the challenge of finding a feasible and sustainable solution which guarantees the demand requirements for the supply chain. Also, there's a need to create an effective data analysis methodology where the decision makers can take advantage of the process knowledge, their criterion and experience to focus on the sensitive echelons of the system. The research objective was to implement machine-learning algorithms to analyze the sensitivity of the supply chains with a sustainable scope. This included integral metrics on the optimization process and modeling recommendations for the Sustainable Development Objectives. Additionally, interactive tools were developed to solve an optimization problem based on linear programming and different criteria, including economic, environmental, and financial considerations. The above is framed in a case study of a Colombian textile industry that needed to analyze investment and operational alternatives with a multi-objective scope that guarantees good performance and stability. A 663% improvement in the expected net present value results was achieved. In addition, operational alternatives were found that not only improved the expected outcome of various metrics, but also improved system dynamics and resilience (headroom) with waste reduction over the entire time horizon. In conclusion, a data-based methodology is proposed to analyze the sensitivity of sustainable supply chains, giving the opportunity to identify valuable insights, whose can guide the decision-making process to a better performance and/or less variable results in the different objectives that are studied.
dc.formatapplication/pdfes_ES
dc.format.extent124 páginases_ES
dc.language.isoenges_ES
dc.publisherUniversidad del Nortees_ES
dc.titleMachine-learning based sensitivity analysis for a sustainable supply chain optimization modelen_US
dc.typeTrabajo de grado - Maestríaes_ES
dc.publisher.programMaestría en Ingeniería Industriales_ES
dc.publisher.departmentDepartamento de ingeniería industriales_ES
dc.description.degreelevelMaestríaes_ES
dc.publisher.placeBarranquilla, Colombiaes_ES
dc.rights.creativecommonshttps://creativecommons.org/licenses/by/4.0/es_ES
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcces_ES
dc.type.driverinfo:eu-repo/semantics/masterThesises_ES
dc.type.contentTextes_ES
dc.type.versioninfo:eu-repo/semantics/submittedVersiones_ES
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaes_ES
dc.title.translatedAnálisis de sensibilidad basado en aprendizaje de máquina para un modelo de optimización de una cadena de suministro sosteniblees_ES
dc.description.degreenameMagister en Ingeniería Industriales_ES
oaire.accessrightshttp://purl.org/coar/access_right/c_16eces_ES
dcterms.audience.educationalcontextEstudianteses_ES
dc.subject.lembLogística en los negocios
dc.subject.lembIndustria textil -- Colombia
dc.subject.lembAprendizaje de máquinas
dc.subject.lembToma de decisiones
dcterms.audience.professionaldevelopmentMaestríaes_ES
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccesses_ES


Ficheros en el ítem

No Thumbnail [100%x80]
No Thumbnail [100%x80]
No Thumbnail [100%x80]
No Thumbnail [100%x80]
No Thumbnail [100%x80]
No Thumbnail [100%x80]
No Thumbnail [100%x80]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem