Mostrar el registro sencillo del ítem

dc.contributor.advisorGalindo Pacheco, Gina
dc.contributor.authorBetancourt Reyes, José Daniel
dc.date.accessioned2020-09-22T13:05:40Z
dc.date.available2020-09-22T13:05:40Z
dc.date.issued2017-03-20
dc.identifier.urihttp://hdl.handle.net/10584/8965
dc.description.abstractSearch and Rescue (SAR) is a hard decision making context where there is available a limited amount of resources that should be strategically allocated over the search region in order to find missing people opportunely. In this thesis, we consider those SAR scenarios where the search region is being affected by some type of dynamic threat such as a wilder or a hurricane. In spite of the large amount of SAR missions that consistently take place under these circumstances, and being Search Theory a research area dating back from more than a half century, to the best of our knowledge, this kind of search problem has not being considered in any previous research. Here we propose a bi-objective mathematical optimization model and three solution methods for the problem: (1) Epsilon-constraint; (2) Lexicographic; and (3) Ant Colony based heuristic. One of the objectives of our model pursues the allocation of resources in riskiest zones. This objective attempts to find victims located at the closest regions to the threat, presenting a high risk of being reached by the disaster. In contrast, the second objective is oriented to allocate resources in regions where it is more likely to find the victim. Furthermore, we implemented a receding horizon approach oriented to provide our planning methodology with the ability to adapt to disaster's behavior based on updated information gathered during the mission. All our products were validated through computational experiments.
dc.formatapplication/pdfes_ES
dc.language.isoenges_ES
dc.publisherUniversidad del Nortees_ES
dc.subject.lcshTeoría bayesiana de decisiones estadísticas
dc.subject.lcshOptimización matemática
dc.subject.meshToma de decisiones -- Modelos matemáticos
dc.titleBayesian Search Under Dynamic Disaster Scenariosen_US
dc.typeTrabajo de grado - Maestríaes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.publisher.programMaestría en Ingeniería Industriales_ES
dc.publisher.departmentDepartamento de ingeniería industriales_ES
dc.description.degreelevelMaestríaes_ES
dc.publisher.placeBarranquilla, Colombiaes_ES
dc.rights.creativecommonshttps://creativecommons.org/licenses/by/4.0/es_ES
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcces_ES
dc.type.driverinfo:eu-repo/semantics/masterThesises_ES
dc.type.contentTextes_ES
dc.type.redcolhttps://purl.org/redcol/resource_type/INFes_ES
dc.type.versioninfo:eu-repo/semantics/updatedVersiones_ES
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaes_ES
dc.description.degreenameMagister en Ingeniería Industriales_ES
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2es_ES
dcterms.audience.educationalcontextPúblico generales_ES
dcterms.audience.professionaldevelopmentPregradoes_ES
dcterms.audience.professionaldevelopmentEspecializaciónes_ES
dcterms.audience.professionaldevelopmentMaestríaes_ES
dcterms.audience.professionaldevelopmentDoctoradoes_ES


Ficheros en el ítem

No Thumbnail [100%x80]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem