• Login
    Ver ítem 
    •   DSpace Principal
    • División Ingenierías
    • Departamento de Ingeniería Eléctrica
    • Tesis Doctorado en Ingeniería Eléctrica y Electrónica
    • Ver ítem
    •   DSpace Principal
    • División Ingenierías
    • Departamento de Ingeniería Eléctrica
    • Tesis Doctorado en Ingeniería Eléctrica y Electrónica
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Synthesis of normal and abnormal heart sounds using Generative Adversarial Networks

    • Exportar citas
      • Exportar a Refworks
      • Exportar a Ris
      • Exportar a Endnote
      • Exportar a Mendeley
    URI
    http://hdl.handle.net/10584/11347
    Registro completo
    Mostrar el registro completo del ítem
    Autor
    Narváez Rosado, Pedro Juan
    Fecha
    2022
    Resumen
    En esta tesis doctoral se presentan diferentes métodos propuestos para el análisis y síntesis de sonidos cardíacos normales y anormales, logrando los siguientes aportes al estado del arte: i) Se implementó un algoritmo basado en la transformada wavelet empírica (EWT) y la energía promedio normalizada de Shannon (NASE) para mejorar la etapa de segmentación automática de los sonidos cardíacos; ii) Se implementaron diferentes técnicas de extracción de características para las señales cardíacas utilizando los coeficientes cepstrales de frecuencia Mel (MFCC), los coeficientes de predicción lineal (LPC) y los valores de potencia. Además, se probaron varios modelos de Machine Learning para la clasificación automática de sonidos cardíacos normales y anormales; iii) Se diseñó un modelo basado en Redes Adversarias Generativas (GAN) para generar sonidos cardíacos sintéticos normales. Además, se implementa un algoritmo de eliminación de ruido utilizando EWT, lo que permite una disminución en la cantidad de épocas y el costo computacional que requiere el modelo GAN; iv) Finalmente, se propone un modelo basado en la arquitectura GAN, que consiste en refinar señales cardíacas sintéticas obtenidas por un modelo matemático con características de señales cardíacas reales. Este modelo se ha denominado FeaturesGAN y no requiere una gran base de datos para generar diferentes tipos de sonidos cardíacos. Cada uno de estos aportes fueron validados con diferentes métodos objetivos y comparados con trabajos publicados en el estado del arte, obteniendo resultados favorables.
    Colecciones a las que pertenece
    • Tesis Doctorado en Ingeniería Eléctrica y Electrónica [7]
    1082935016.pdf (2.994Mb)Visualizar
    -

    DSpace software copyright © 2002-2016  DuraSpace
    Contacto | Sugerencias
    Theme by 
    Atmire NV
     

     

    Listar

    Todo DSpaceComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasEsta colecciónPor fecha de publicaciónAutoresTítulosMaterias

    Mi cuenta

    AccederRegistro

    DSpace software copyright © 2002-2016  DuraSpace
    Contacto | Sugerencias
    Theme by 
    Atmire NV