Mostrar el registro sencillo del ítem

dc.contributor.advisorZurek Varela, Eduardo Enrique
dc.contributor.authorMejía Jiménez, Andrés Felipe
dc.date.accessioned2025-03-05T19:36:29Z
dc.date.available2025-03-05T19:36:29Z
dc.date.issued2024
dc.identifier.urihttp://hdl.handle.net/10584/13147
dc.description.abstractWith the global rise of the agricultural industry driven by a growing population, meeting the increasing demand for plant-based products has become more challenging. This difficulty arises from the complexity of ensuring that crop yield and quality are not compromised by external factors or diseases. Traditionally, visual inspection has been the primary method for identifying plant diseases. However, even experienced agriculturists and pathologists can struggle with this task due to the vast variety of diseases. This challenge has led to the development of computer vision techniques that enable us to process images and extract meaningful features. These features can then be used to classify plant diseases through machine learning algorithms such as Support Vector Machine (SVM), k-Nearest Neighbors (KNN), and Random Forest (RF), aiding in more accurate and efficient disease diagnosis. One of the key challenges in image classification is the lack of transparency in many processing methods, often referred to as the ”black box” nature of these techniques. Understanding how specific methods transform images and how these changes influence classification accuracy can be difficult. This challenge complicates efforts to optimize algorithms effectively. To address this, we develop and compare two distinct image processing techniques: K-Means-Based Segmentation and Color-Based Segmentation. After segmentation, we perform feature extraction using the Gray Level Co-occurrence Matrix (GLCM) to capture critical texture features. By varying parameters and introducing additional steps in the image processing workflows, we examine how these adjustments impact the classification accuracy. For classification, we employed SVM, KNN, and RF algorithms and compare their performance to assess the effectiveness of the proposed techniques.
dc.formatapplication/pdfes_ES
dc.format.extent93 páginases_ES
dc.language.isoenges_ES
dc.publisherUniversidad del Nortees_ES
dc.titleEffects of segmentation techniques on classification algorithms for plant leaf diseases imagesen_US
dc.typeTrabajo de grado - Maestríaes_ES
dc.publisher.programMaestría en Ingeniería de Sistemas y Computaciónes_ES
dc.publisher.departmentDepartamento de ingeniería de sistemases_ES
dc.description.degreelevelMaestríaes_ES
dc.publisher.placeBarranquilla, Colombiaes_ES
dc.rights.creativecommonshttps://creativecommons.org/licenses/by/4.0/es_ES
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcces_ES
dc.type.driverinfo:eu-repo/semantics/masterThesises_ES
dc.type.contentTextes_ES
dc.type.versioninfo:eu-repo/semantics/submittedVersiones_ES
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaes_ES
dc.title.translatedEfectos de las técnicas de segmentación en los algoritmos de clasificación de imágenes de enfermedades de las hojas de las plantases_ES
dc.description.degreenameMagister en Ingeniería de Sistemas y Computaciónes_ES
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2es_ES
dcterms.audience.educationalcontextEstudianteses_ES
dc.subject.lembAlgoritmos -- Procesamiento de datos
dc.subject.lembPatología vegetal
dc.subject.lembIndustria agrícola
dc.subject.lembAprendizaje de máquinas
dcterms.audience.professionaldevelopmentMaestríaes_ES
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesses_ES


Ficheros en el ítem

No Thumbnail [100%x80]
No Thumbnail [100%x80]
No Thumbnail [100%x80]
No Thumbnail [100%x80]
No Thumbnail [100%x80]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem