• Login
    Ver ítem 
    •   DSpace Principal
    • División Ingenierías
    • Departamento de Ingeniería Industrial
    • Tesis Doctorado en Ingeniería Industrial
    • Ver ítem
    •   DSpace Principal
    • División Ingenierías
    • Departamento de Ingeniería Industrial
    • Tesis Doctorado en Ingeniería Industrial
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Reactive scheduling to treat disruptive events in the MRCPSP

    • Exportar citas
      • Exportar a Refworks
      • Exportar a Ris
      • Exportar a Endnote
      • Exportar a Mendeley
    URI
    http://hdl.handle.net/10584/10009
    Registro completo
    Mostrar el registro completo del ítem
    Autor
    Machado Domínguez, Luis Fernando
    Fecha
    2021
    Resumen
    Esta tesis se centra en diseñar y desarrollar una metodología para abordar el MRCPSP con diversas funciones objetivo y diferentes tipos de interrupciones. En esta tesis se exploran el MRCPSP con dos funciones objetivo, a saber: (1) minimizar la duración del proyecto y (2) maximizar el valor presente neto del proyecto. Luego, se tiene en cuenta dos tipos diferentes de interrupciones, (a) interrupción de duración, e (b) interrupción de recurso renovable. Para resolver el MRCPSP, en esta tesis se proponen tres estrategias metaheurísticas: (1) algoritmo memético para minimizar la duración del proyecto, (2) algoritmo adaptativo de forrajeo bacteriano para maximizar el valor presente neto del proyecto y (3) algoritmo de optimización multiobjetivo de forrajeo bacteriano (MBFO) para resolver el MRCPSP con eventos de interrupción. Para juzgar el rendimiento del algoritmo memético y de forrajeo bacteriano propuestos, se ha llevado a cabo un extenso análisis basado en diseño factorial y diseño Taguchi para controlar y optimizar los parámetros del algoritmo. Además se han puesto a prueba resolviendo las instancias de los conjuntos más importantes en la literatura: PSPLIB (10,12,14,16,18,20 y 30 actividades) y MMLIB (50 y 100 actividades). También se ha demostrado la superioridad de los algoritmos metaheurísticos propuestos sobre otros enfoques heurísticos y metaheurísticos del estado del arte. A partir de los estudios experimentales se ha ajustado la MBFO, utilizando un caso de estudio.
    Colecciones a las que pertenece
    • Tesis Doctorado en Ingeniería Industrial [9]
    10966742 (2).pdf (3.717Mb)Visualizar
    -

    DSpace software copyright © 2002-2016  DuraSpace
    Contacto | Sugerencias
    Theme by 
    Atmire NV
     

     

    Listar

    Todo DSpaceComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasEsta colecciónPor fecha de publicaciónAutoresTítulosMaterias

    Mi cuenta

    AccederRegistro

    DSpace software copyright © 2002-2016  DuraSpace
    Contacto | Sugerencias
    Theme by 
    Atmire NV